ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΟΝΑΔΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΩΝ

ΤΥΠΟΛΟΓΙΟ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ

Ι

ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ

Ορισμοι			
Σχετική διηλεκτρική σταθερά		$arepsilon_r = rac{arepsilon}{arepsilon_0}$	
Μοναδιαίο διάνυσμα σε ευθύγραμμο τμήμα AB με φορά από το A στο B		$\mathbf{e}_{\mathrm{AB}}=rac{\mathbf{R}_{\mathrm{AB}}}{R_{\mathrm{AB}}}$	
I.1	Φορτίο γραμμής μήκους <i>l</i> με διανεμημένο φορτίο γραμμικής πυκνότητας ρ _l	$q_l = \int_l dq_l = \int_l ho_l dl$	
I.2	Φορτίο επιφάνειας S με διανεμημένο φορτίο επιφανειακής πυκνότητας ρ_S	$q_{\scriptscriptstyle S} = \iint_{\scriptscriptstyle S} dq_{\scriptscriptstyle S} = \iint_{\scriptscriptstyle S} ho_{\scriptscriptstyle S} dS$	
I.3	Φορτίο όγκου V με διανεμημένο φορτίο χωρικής πυκνότητας ρ	$q_{V} = \iiint_{V} dq_{V} = \iiint_{V} \rho dV$	

Δύναμεις – Εργο

I.4	Δύναμη ανάμεσα στα σημειακά φορτία q_A και q_B σε μέσο διηλεκτρικής σταθεράς ε , όπου \mathbf{R}_{AB} η διανυσματική απόσταση των φορτίων (Νόμος Coulomb)	$\mathbf{F}_{_{\mathrm{AB}}}=rac{1}{4\piarepsilon}rac{q_{_{\mathrm{A}}}q_{_{\mathrm{B}}}}{R_{_{\mathrm{AB}}}^3}\mathbf{R}_{_{\mathrm{AB}}}=rac{1}{4\piarepsilon}rac{q_{_{\mathrm{A}}}q_{_{\mathrm{B}}}}{R_{_{\mathrm{AB}}}^2}\mathbf{e}_{_{\mathrm{AB}}}$
I.5	Συνολική δύναμη που ασκείται στο φορτίο q από σύστημα φορτίων $({f R}_{i}={f r}-{f r}_{i})$	$\mathbf{F} = \sum_{i=1}^{n} \mathbf{F}_{\mathbf{i}} = \frac{q}{4\pi\varepsilon} \sum_{i=1}^{n} \frac{q_{i}}{R_{i}^{3}} \mathbf{R}_{\mathbf{i}}$
I.6	Δύναμη που ασκείται σε σημειακό φορτίο q από γραμμικό φορτίο πυκνότητας ρ_l (R : διανυσματική απόσταση του φορτίου q από το στοιχείο dl')	$\mathbf{F}_{l}=rac{q}{4\piarepsilon}\int_{l'}rac{ ho_{l}\mathbf{R}}{R^{3}}dl'$
I.7	Δύναμη που ασκείται σε σημειακό φορτίο q από επιφανειακό φορτίο πυκνότητας ρ_s	$\mathbf{F}_{\!S}=rac{q}{4\piarepsilon} \iint_{S'} rac{ ho_{_S} \mathbf{R}}{R^3} dS'$
I.8	Δύναμη που ασκείται σε σημειακό φορτίο q από χωρικό φορτίο πυκνότητας ρ	$\mathbf{F}_{\!_V} = rac{q}{4\piarepsilon} \int \!$
I.9	Έργο κατά τη μετακίνηση σημειακού φορτίου q από το σημείο Α στο σημείο Β	$W_{\rm AB} = \int_{\rm A}^{\rm B} dW = \int_{\rm A}^{\rm B} \mathbf{F} \cdot d\mathbf{l} = q \int_{\rm A}^{\rm B} \mathbf{E} \cdot d\mathbf{l}$

I.10	Έργο της δύναμης του πεδίου σημειακού φορτίου <i>Q</i> για τη μετακίνηση σημειακού φορτίου <i>q</i> από το σημείο <i>Α</i> στο σημείο <i>B</i>	$W_{\scriptscriptstyle m AB} = rac{Qq}{4\piarepsilon} \int_{\scriptscriptstyle m A}^{\scriptscriptstyle m B} rac{dr}{r^2} = rac{Qq}{4\piarepsilon} iggl(rac{1}{r_{\scriptscriptstyle m A}} - rac{1}{r_{\scriptscriptstyle m B}} iggr)$
------	--	---

ΗΛΕΚΤΡΙΚΗ ΠΕΛΙΑΚΗ ΕΝΤΑΣΗ – ΒΑΘΜΩΤΟ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

I.11	Ορισμός ηλεκτρικής πεδιακής έντασης	$\mathbf{E} = rac{\mathbf{F}}{q}$
I.12	Νόμος του αστροβίλου του ηλεκτροστατικού πεδίου	$\oint_{C} \mathbf{E} \cdot d\mathbf{l} = 0$, (ολοκληρωτική μορφή) $ abla imes \mathbf{E} = 0$, (διαφορική μορφή)
I.13	Διαφορά δυναμικού από το σημείο Α στο σημείο Β	$U_{_{\mathrm{AB}}}=rac{W_{_{\mathrm{AB}}}}{q}=\int_{_{\mathrm{A}}}^{^{\mathrm{B}}}\mathbf{E}\cdot d\mathbf{l}$
I.14	Βαθμωτό ηλεκτρικό δυναμικό σημείου Ρ ως προς το σημείο αναφοράς των δυναμικών Κ	$\phi_{\mathrm{P}} = U_{\mathrm{PK}} = rac{W_{\mathrm{PK}}}{q} = \int_{\mathrm{P}}^{\mathrm{K}} \mathbf{E} \cdot d\mathbf{l}$
I.15	Διαφορά δυναμικού ανάμεσα στα σημεία Α και Β	$U_{\mathrm{AB}}=\phi_{\mathrm{A}}-\phi_{\mathrm{B}}=\int_{\mathrm{A}}^{\mathrm{B}}\mathbf{E}\cdot d\mathbf{l}$
I.16	Συσχέτιση ηλεκτρικής πεδιακής έντασης και συνάρτησης δυναμικού	$\mathbf{E}=- abla \phi$
I.17	Βαθμωτό ηλεκτρικό δυναμικό πεδίου που δημιουργείται από σημειακό φορτίο Q	$\phi = \frac{Q}{4\pi\varepsilon} \left(\frac{1}{r} - \frac{1}{r_{\rm K}} \right) \stackrel{r_{\rm K} \to \infty}{\Rightarrow} \phi = \frac{Q}{4\pi\varepsilon r}$
I.18	Βαθμωτό ηλεκτρικό δυναμικό πεδίου που δημιουργείται από σημειακά και διανεμημένα ηλεκτρικά φορτία	$\phi = \frac{1}{4\pi\varepsilon} \left(\sum_{i=1}^{n} \frac{q_i}{R_i} + \int_{l'} \frac{\rho_l dl'}{R} + \iint_{S'} \frac{\rho_S dS'}{R} + \iiint_{V'} \frac{\rho dV'}{R} \right)$
I.19	Διαφορική εξίσωση δυναμικής γραμμής	$\mathbf{E} \times d\mathbf{l} = 0$
1.20	Διαφορική εξίσωση δυναμικής γραμμής σε καρτεσιανές συντεταγμένες	$\frac{dx}{E_x} = \frac{dy}{E_y} = \frac{dz}{E_z}$
I.21	Διαφορική εξίσωση δυναμικής γραμμής σε κυλινδρικές συντεταγμένες	$\frac{d\rho}{E_{\rho}} = \frac{\rho d\varphi}{E_{\varphi}} = \frac{dz}{E_{z}}$
1.22	Διαφορική εξίσωση δυναμικής γραμμής σε σφαιρικές συντεταγμένες	$\frac{dr}{E_r} = \frac{rd\theta}{E_{\theta}} = \frac{r\sin\theta d\varphi}{E_{\varphi}}$
1.23	Παραμετρική εξίσωση δυναμικών γραμμών πεδίου σημειακών φορτίων q_1, q_2, \ldots, q_n , τοποθετημένων στην ίδια ευθεία. θ_i η γωνία που συνδέει την ευθεία μεταξύ του φορτίο q_i και του σημείου παρατήρησης με την ευθεία των φορτίων.	$\sum_{i=1}^n q_i \cos heta_i = C$ C : παραμετρική σταθερά

ΗΛΕΚΤΡΙΚΟ ΚΕΝΤΡΟ ΒΑΡΟΥΣ – ΠΟΛΥΠΟΛΙΚΟ ΑΝΑΠΤΥΓΜΑ ΔΥΝΑΜΙΚΟΥ

I.24	Θέση του ηλεκτρικού κέντρου βάρους (HKB) ενός συστήματος σημειακών και διανεμημένων φορτίων (α : διανυσματική απόσταση του HKB από την αρχή των αξόνων)	$\boldsymbol{\alpha} = \frac{\sum_{i=1}^{n} q_i \mathbf{r}'_i + \int_{l'} \rho_l \mathbf{r}' dl' + \iint_{S'} \rho_S \mathbf{r}' dS' + \iiint_{V'} \rho \mathbf{r}' dV'}{\sum_{i=1}^{n} q_i + \int_{l'} \rho_l dl' + \iint_{S'} \rho_S dS' + \iiint_{V'} \rho dV'}$
1.25	Δυναμικό του πεδίου που δημιουργείται από σύστημα φορτίων σε απομακρυσμένο σημείο που απέχει απόσταση R ₀ από το ηλεκτρικό κέντρο βάρους του συστήματος	$\phi = \frac{\sum_{i=1}^{n} q_i + \int_{l'} \rho_l dl' + \iint_{S'} \rho_S dS' + \iiint_{V'} \rho dV'}{4\pi\varepsilon R_0}$
1.26	Διπολική ροπή ηλεκτρικού διπόλου, (συστήματος δύο φορτίων $+q$ και $-q$ που βρίσκονται σε απόσταση α). Θετική φορά του α από το $-q$ προς το +q.	$\mathrm{M}=qlpha$
1.27	Ηλεκτρική διπολική ροπή συστήματος φορτίων	$\mathbf{p} = \mathbf{M} = \sum_{i=1}^n q_i \mathbf{r}_i$
I.28	Μονοπολικός όρος αναπτύγματος του δυναμικού	$\phi_m({f r})=rac{q_{o\lambda}}{4\piarepsilon r}~\left({f lpha v}~q_{o\lambda} eq 0 ight)$
I.29	Διπολικός όρος αναπτύγματος δυναμικού	$\phi_{d} = rac{\mathbf{M} \cdot \mathbf{r_{0}}}{4\pi arepsilon r^{2}} = rac{\mathbf{M} \cdot \mathbf{r}}{4\pi arepsilon r^{3}} \left(lpha \mathbf{v} q_{o\lambda} = 0 ight)$
1.30	Δυναμικό του σημειακού ηλεκτρικού διπόλου ($a \rightarrow 0$ και $q \rightarrow \infty$. Δίπολο στον άζονα z με κέντρο στην αρχή των αξόνων)	$\phi = \frac{\mathbf{M} \cdot \mathbf{r}}{4\pi\varepsilon r^3} = -\frac{1}{4\pi\varepsilon} \mathbf{M} \cdot \nabla \left(\frac{1}{r}\right) = \frac{q\alpha}{4\pi\varepsilon} \frac{\cos\theta}{r^2}$
I.31	Τετραπολικός όρος αναπτύγματος δυναμικού	$\begin{split} \phi_q(\mathbf{r}) &= \frac{1}{4\pi\varepsilon r^3} \Biggl\{ \sum_{i=1}^n \frac{q_i}{2} \Biggl[3 \Biggl(\frac{\mathbf{r} \cdot \mathbf{r}_i}{r} \Biggr)^2 - r_i^2 \Biggr] \Biggr\} \\ &= \frac{1}{4\pi\varepsilon r^3} \Biggl[\sum_{i=1}^n \frac{q_i r_i^2}{2} (3\cos^2\theta_i - 1) \Biggr] \end{split} (\text{av } q_{o\lambda} = 0 \text{ , } \mathbf{M} = 0 \text{)}$
1.32	Δυναμικό του γραμμικού ή αξονικού τετραπόλου	$\phi = \frac{q\alpha^2}{4\pi\varepsilon r^3} (3\cos^2\theta - 1)$

Νομός του Gauss – Διηλεκτρική Μετατοπίση

I.33	Διηλεκτρική μετατόπιση ή πυκνότητα ηλεκτρικής ροής	$\mathbf{D} = \varepsilon \mathbf{E}$
1.34	Διηλεκτρική μετατόπιση σε ανισότροπο μέσο	$D_x = \varepsilon_{xx}E_x + \varepsilon_{xy}E_y + \varepsilon_{xz}E_z$ $D_y = \varepsilon_{yx}E_x + \varepsilon_{yy}E_y + \varepsilon_{yz}E_z$ $D_z = \varepsilon_{zx}E_x + \varepsilon_{zy}E_y + \varepsilon_{zz}E_z$ $\varepsilon_{xy} = \varepsilon_{yx}, \varepsilon_{xz} = \varepsilon_{zx}, \varepsilon_{yz} = \varepsilon_{zy}$

1.35	Ηλεκτρική ροή που διέρχεται από επιφάνεια S , όπου n το κάθετο στην επιφάνεια μοναδιαίο διάνυσμα	$N = \iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iint_{S} \mathbf{D} \cdot \mathbf{n} dS$
1.36	Στερεά γωνία με την οποία φαίνεται η επιφάνεια S από απόσταση r	$\Omega = \iint_{s} \frac{\mathbf{r} \cdot d\mathbf{S}}{r^{3}}$
1.37	Στοιχειώδης ροή που διέρχεται από το στοιχείο επιφανείας dS , το οποίο φαίνεται υπό στερεά γωνία $d\Omega$ από το σημειακό φορτίο Q	$dN = \frac{Q}{4\pi} d\Omega$
I.38	Νόμος του Gauss	$\oint \!$
1.39	Οριακές συνθήκες σε διαχωριστική επιφάνεια δύο μέσων. n ₀ μοναδιαίο διάνυσμα κάθετο στη διαχωριστική επιφάνεια με φορά από το μέσο 1 προς το μέσο 2	$\begin{aligned} (\mathbf{D}_2 - \mathbf{D}_1) \cdot \mathbf{n}_{0} &= \rho_S \Rightarrow D_{n2} - D_{n1} = \rho_S \\ \mathbf{n}_{0} \times (\mathbf{E}_1 - \mathbf{E}_2) &= 0 \Rightarrow E_{\mathbf{t}_1} = E_{\mathbf{t}_2} \end{aligned}$

Π

ΑΓΩΓΟΙ, ΠΥΚΝΩΤΕΣ, ΕΝΕΡΓΕΙΑ ΗΛΕΚΤΡΙΚΟΥ ΠΕΔΙΟΥ

Αγωγιμα Σωματα			
II.1	Ηλεκτρικό πεδίο στο εσωτερικό ενός αγωγού σε ηλεκτροστατική ισορροπία	$\mathbf{E}=0\;,\;\mathbf{D}=0\;,\;\rho=0$	
II.2	Δυναμικό σε κάθε σημείο του αγωγού	$\phi = const.$	
П.3	Ηλεκτρική πεδιακή ένταση στην επιφά- νεια ενός αγωγού (n ₀ το προς τα έξω κάθετο στην επιφάνεια του αγωγού μο- ναδιαίο διάνυσμα)	$\mathbf{E} = E_n \mathbf{n_0}$	
II.4	Διηλεκτρική μετατόπιση στην επιφάνεια ενός αγωγού	$\mathbf{D} = D_n \mathbf{n_0} = D \mathbf{n_0} = \rho_s \mathbf{n_0}$	
11.5	Θεώρημα αμοιβαιότητας του Green για σημειακά φορτία $(1^{\eta}$ κατάσταση: ϕ_i, q_i , 2^{η} κατάσταση: ϕ'_i, q'_i)	$\sum_{i=1}^n \phi_i q_i' = \sum_{i=1}^n \phi_i' q_i$	
11.6	Θεώρημα αμοιβαιότητας του Green για σύστημα n αγωγών	$\sum_{i=1}^n \phi_i Q_i' = \sum_{i=1}^n \phi_i' Q_i$	
II.7	Γενική διαφορική εξίσωση της συνάρτη- σης δυναμικού (εξίσωση Poisson)	$ abla^2 \phi = -rac{ ho}{arepsilon}$	
II.8	Διαφορική εξίσωση της συνάρτησης δυ- ναμικού σε χώρο χωρίς χωρικά φορτία (εξίσωση Laplace)	$ abla^2 \phi = 0$	

ΠΥΚΝΩΤΕΣ – ΧΩΡΗΤΙΚΟΤΗΤΑ

II.9	Χωρητικότητα πυκνωτή	$C = rac{Q}{U} = rac{{{\iint}_{{{S_{\rm{A}}}}} arepsilon EdS}}}{{\int_{ m{A}}^{ m{B}} {{f E} \cdot d{f l}}}}$
II.10	Χωρητικότητα σφαιρικού πυκνωτή με ακτίνα εσωτερικού οπλισμού a και ακτίνα εξωτερικού οπλισμού b	$C = 4\pi\varepsilon \frac{ab}{b-a}$
II.11	Χωρητικότητα μεμονωμένου σφαιρικού αγωγού ακτίνας a μέσα σε απέραντο διηλεκτρικό $(b \to \infty)$	$C = 4\pi\varepsilon a$

II.12	Χωρητικότητα κυλινδρικού πυκνωτή με ακτίνα εσωτερικού αγωγού a και ακτίνα εξωτερικού αγωγού b	$C = \frac{2\pi\varepsilon}{\ln\frac{b}{a}}$
II.13	Χωρητικότητα επίπεδου πυκνωτή (S : επιφάνεια πλακών, d : απόσταση πλακών)	$C = \varepsilon \frac{S}{d}$
II.14	Ισοδύναμη χωρητικότητα πυκνωτών σε παράλληλη σύνδεση	$C = \sum_{i=1}^n C_i$
II.15	Ισοδύναμη χωρητικότητα πυκνωτών συνδεδεμένων σε σειρά	$C = \left(\sum_{i=1}^n \frac{1}{C_i}\right)^{-1}$
II.16	Σχέσεις μετατροπής διάταξης πυκνωτών από αστέρα σε τρίγωνο (C_a, C_b, C_c : χω- ρητικότητες συνδεσμολογίας τριγώνου)	$\begin{split} C_{a} = \frac{C_{2}C_{3}}{C_{1}+C_{2}+C_{3}} \qquad C_{b} = \frac{C_{1}C_{3}}{C_{1}+C_{2}+C_{3}} \\ C_{c} = \frac{C_{1}C_{2}}{C_{1}+C_{2}+C_{3}} \end{split}$
II.17	Σχέσεις μετατροπής διάταξης πυκνωτών από τρίγωνο σε αστέρα (C_1, C_2, C_3 : χω- ρητικότητες συνδεσμολογίας αστέρα)	$egin{aligned} C_1 &= rac{C_a C_b + C_b C_c + C_a C_c}{C_a} \ C_2 &= rac{C_a C_b + C_b C_c + C_a C_c}{C_b} \ C_3 &= rac{C_a C_b + C_b C_c + C_a C_c}{C_c} \ \end{array} \end{aligned}$

Σ ΥΣΤΗΜΑΤΑ ΑΓΩΓΙΜΩΝ ΣΩΜΑΤΩΝ

11.18	Γραμμικές σχέσεις δυναμικών και φορ- τίων των αγωγών ενός συστήματος	$\phi_{1} = p_{11}Q_{1} + p_{12}Q_{2} + \dots + p_{1n}Q_{n}$ $\phi_{2} = p_{21}Q_{1} + p_{22}Q_{2} + \dots + p_{2n}Q_{n}$ $\phi_{n} = p_{n1}Q_{1} + p_{n2}Q_{2} + \dots + p_{nn}Q_{n}$
II.19	Συντελεστές δυναμικού (Farad ⁻¹)	$p_{ij} \geq 0$, $\ p_{ij} = p_{ji}$
11.20	Γραμμικές σχέσεις φορτίων και δυναμι- κών των αγωγών ενός συστήματος	$Q_{1} = c_{11}\phi_{1} + c_{12}\phi_{2} + \dots + c_{1n}\phi_{n}$ $Q_{2} = c_{21}\phi_{1} + c_{22}\phi_{2} + \dots + c_{2n}\phi_{n}$ $Q_{n} = c_{n1}\phi_{1} + c_{n2}\phi_{2} + \dots + c_{nn}\phi_{n}$
II.21	Συντελεστές χωρητικότητας (c_{ii}) και επαγωγής $(c_{ij}, i \neq j)$	$c_{_{ii}}>0,\ c_{_{ij}}=c_{_{ji}}\leq 0$
11.22	Συνολικό φορτίο κλειστού συστήματος	$\sum_{i=1}^n Q_i = 0$
11.23	Συντελεστές χωρητικότητας σε κλειστό σύστημα	$\sum_{i=1}^{n} c_{ij} = 0, j = 1, 2,, n$

II.24	Ορισμός μερικών χωρητικοτήτων	$C_{ij} = -c_{ij} \ (i \neq j), \ C_{ii} = c_{i1} + c_{i2} + \dots + c_{in} = \sum_{j=1}^{n} c_{ij}$
11.25	Γραμμικές σχέσεις φορτίων και δυναμι- κών ενός συστήματος με συντελεστές τις μερικές χωρητικότητες του συστήματος	$Q_{1} = C_{11}\phi_{1} + C_{12}(\phi_{1} - \phi_{2}) + \dots + C_{1n}(\phi_{1} - \phi_{n})$ $Q_{2} = C_{21}(\phi_{2} - \phi_{1}) + C_{22}\phi_{2} + \dots + C_{2n}(\phi_{2} - \phi_{n})$ \dots $Q_{n} = C_{n1}(\phi_{n} - \phi_{1}) + C_{n2}(\phi_{n} - \phi_{2}) + \dots + C_{nn}\phi_{n}$
11.26	Μερικές χωρητικότητες σε κλειστό σύ- στημα	$C_{ii} = 0$

ΕΝΕΡΓΕΙΑ ΗΛΕΚΤΡΙΚΟΥ ΠΕΔΙΟΥ

II.27	Δυναμική ενέργεια πεδίου σημειακών φορτίων	$W_e=rac{1}{2}\sum_{i=1}^n q_i\phi_i$
II.28	Δυναμική ενέργεια πεδίου χωρικά κατα- νεμημένου φορτίου	$W_e = rac{1}{2} \iiint_V \phi ho dV$
II.29	Δυναμική ενέργεια πεδίου επιφανειακά κατανεμημένου φορτίου	$W_e = rac{1}{2} \iint_S \phi ho_S dS$
II.30	Ενέργεια πεδίου συστήματος n αγωγών	$W_e = \frac{1}{2} \sum_{i=1}^n \phi_i Q_i = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n p_{ij} Q_i Q_j = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n c_{ij} \phi_i \phi_j$
II.31	Ενέργεια πυκνωτή	$W = \frac{1}{2}QU = \frac{1}{2}CV^{2} = \frac{1}{2}\frac{Q^{2}}{C}$
II.32	Πυκνότητα ενέργειας σε γραμμικό και ισότροπο μέσο	$w_{_{e}}=rac{1}{2}arepsilon \mathbf{E}^{2}=rac{1}{2}\mathbf{E}\cdot\mathbf{D}=rac{1}{2}rac{\mathbf{D}^{2}}{arepsilon}$
II.33	Συνολική ενέργεια πεδίου	$\begin{split} W_e &= \iiint w_e dV = \frac{1}{2} \iiint \mathbf{E} \cdot \mathbf{D} dV \\ &= \frac{1}{2} \iiint \varepsilon \mathbf{E}^2 dV = \frac{1}{2} \iiint \frac{\mathbf{D}^2}{\varepsilon} dV \end{split}$
11.34	Πυκνότητα ενέργειας πεδίου σε μη γραμμικό μέσο	$w_{_{e}}=\int_{_{0}}^{^{_{D}}}\mathbf{E}\cdot d\mathbf{D}$

ΗΛΕΚΤΡΟΣΤΑΤΙΚΕΣ ΔΥΝΑΜΕΙΣ – ΠΙΕΣΗ

11.35	Ηλεκτροστατική πίεση στην επιφάνεια φορτισμένου αγωγού	$\mathbf{p} = \frac{d\mathbf{F}}{dS} = w_e \mathbf{n}_0 = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D}) \mathbf{n}_0 = \frac{1}{2} \varepsilon E^2 \mathbf{n}_0 = \frac{1}{2} \frac{D^2}{\varepsilon} \mathbf{n}_0 = \frac{\rho_s^2}{2\varepsilon} \mathbf{n}_0$
11.36	Συνολική δύναμη που ασκεί το πεδίο πάνω σε φορτισμένο αγωγό	$\mathbf{F} = \oint \!$
II.37	Οι κατά x, y, z συνιστώσες της δύναμης \mathbf{F}_i που ασκείται στον <i>i</i> -στό αγωγό ενός συστήματος αγωγών (W_e η αποθηκευ- μένη ενέργεια του πεδίου, W_s η ενέργεια που καταβάλλουν οι τυχόν εξωτερικές ηλεκτρικές πηγές)	$\begin{split} F_{i,x} &= \frac{\partial W_s}{\partial x_i} - \frac{\partial W_e}{\partial x_i}, F_{i,y} = \frac{\partial W_s}{\partial y_i} - \frac{\partial W_e}{\partial y_i}, \\ F_{i,z} &= \frac{\partial W_s}{\partial z_i} - \frac{\partial W_e}{\partial z_i} \end{split}$
11.38	x-συνιστώσα της δύναμης μεταξύ απο- μονωμένων αγωγών (με σταθερά φορτία)	$\begin{split} F_{i,x} &= -\frac{\partial W_e}{\partial x_i} , \; F_{i,x} = -\frac{1}{2} \sum_{j=1}^n Q_j \frac{\partial \phi_j}{\partial x_i} , \\ F_{i,x} &= -\frac{1}{2} \sum_{j=1}^n \sum_{k=1}^n \frac{\partial p_{jk}}{\partial x_i} Q_j Q_k \end{split}$
11.39	Μεταβολή της ενέργειας σε σύστημα αγωγών με σταθερά δυναμικά	$\delta W_e = \delta W_m = \frac{1}{2} \delta W_S = \frac{1}{2} \sum_{j=1}^n \phi_j \delta Q_j$
II.40	x-συνιστώσα της δύναμης μεταξύ αγω- γών με σταθερά δυναμικά	$F_{i,x} = \frac{\partial W_e}{\partial x} = \frac{1}{2} \sum_{j=1}^n \phi_j \frac{\partial Q_j}{\partial x_i} = \frac{1}{2} \sum_{j=1}^n \sum_{k=1}^n \frac{\partial c_{jk}}{\partial x_i} \phi_j \phi_k$
II.41	x-συνιστώσα της δύναμης στους οπλι- σμούς πυκνωτή σε σταθερή τάση ή με σταθερό φορτίο	$F_x = \frac{1}{2} U^2 \frac{\partial C}{\partial x}$
II.42	Δύναμη σε διηλεκτρική πλάκα που ει- σέρχεται σε πυκνωτή (t το πλάτος των οπλισμών, ε η διηλεκτρική σταθερά της πλάκας, d το ύψος της πλάκας)	$\mathbf{F} = \frac{\delta W_m}{\delta x} \mathbf{x_0} = \frac{1}{2} (\varepsilon - \varepsilon_0) \frac{U^2 t}{d} \mathbf{x_0}$
II.43	Πίεση σε διηλεκτρική πλάκα που εισέρ- χεται σε πυκνωτή (t το πλάτος των οπλισμών, ε η διηλεκτρική σταθερά της πλάκας, d το ύψος της πλάκας)	$\mathbf{p} = \frac{\mathbf{F}}{td} = \frac{1}{2} (\varepsilon - \varepsilon_0) \left(\frac{U}{d} \right)^2 \mathbf{x}_0 = \frac{1}{2} (\varepsilon - \varepsilon_0) E^2 \mathbf{x}_0$

III

Η ΥΛΗ ΣΤΟ ΠΕΔΙΟ

Πολωση Διηλεκτρικου

III.1	Συνολική ροπή των διπόλων που περιέχονται στον όγκο δV , όπου N ο αριθμός διπόλων ανά μονάδα όγκου και \mathbf{p}_i η διπολική ροπή του <i>i</i> -στού διπόλου	$\mathbf{p}_t = \sum_{i=1}^{N \delta V} \mathbf{p}_i$
III.2	Το διάνυσμα της πόλωσης ή πόλωση Ρ	$\mathbf{P} = \lim_{\delta V o 0} rac{1}{\delta V} \sum_{i=1}^{N \delta V} \mathbf{p}_i$
111.3	Συνολική διπολική ροπή απειροστού όγκου dV διηλεκτρικού	$d\mathbf{p} = \mathbf{P}(x, y, z) dV$
III.4	Δυναμικό που οφείλεται στα δέσμια φορτία των διπόλων του διηλεκτρικού που καταλαμβάνει όγκο V' και περικλείεται από την κλειστή επιφάνεια S'	$\phi_{b} = \frac{1}{4\pi\varepsilon_{o}} \left(-\iiint_{V'} \frac{\nabla' \cdot \mathbf{P}}{R} dV' + \oiint_{S'} \frac{\mathbf{P} \cdot d\mathbf{S}'}{R} \right)$
111.5	Πυκνότητα ισοδύναμου συστήματος φορτίων χωρικά διανεμημένων στον κενό ύλης όγκο V'	$\rho_b = -\nabla\cdot\mathbf{P}$
111.6	Πυκνότητα ισοδύναμου συστήματος φορτίων επιφανειακά διανεμημένων στην επιφάνεια S'	$ ho_{sb}=P_n={f P}\cdot{f n}_0$
III.7	Το δυναμικό στον χώρο ισούται με το άθροισμα του δυναμικού των αληθινών φορτίων και των φορτίων πόλωσης	$\phi=\phi_0+\phi_b$
111.8	Το δυναμικό πεδίου που οφείλεται σε μη ομογενές διηλεκτρικό. P_n και P'_n είναι οι κάθετες συνιστώσες του διανύσματος της πόλωσης στις δύο όψεις των διαχωριστικών επιφανειών των περιοχών S'	$\phi_{b} = \frac{1}{4\pi\varepsilon_{o}} \left[-\iiint_{V'} \frac{\nabla \cdot \mathbf{P}}{R} dV' + \iint_{S'} \frac{(P_{n} + P_{n}')}{R} dS' \right]$
111.9	Πυκνότητα φορτίων πόλωσης στη διαχωριστική επιφάνεια δύο διαφορετικών διηλεκτρικών υλικών (Η φορά των P , P ', n ₀ , n ' ₀ από το αντίστοιχο μέσο προς τη διαχωριστική επιφάνεια).	$ ho_{sb}=P_n+P_n'={f P}\cdot{f n}_0+{f P}'\cdot{f n}_0'$
III.10	Δυναμικό υφιστάμενου πεδίου κατά την παρουσία διηλεκτρικού (όπου ρ και ρ _s είναι οι πυκνότητες των αληθινών χωρικών και επιφανειακών φορτίων)	$egin{aligned} \phi &= \phi_{\scriptscriptstyle 0} + \phi_{\scriptscriptstyle b} = rac{1}{4\piarepsilon_{_{V'}}} \left[\iiint_{_{V'}} rac{(ho+ ho_{\scriptscriptstyle b})}{R} dV' \ &+ \iint_{_{S'}} rac{(ho_{\scriptscriptstyle s}+ ho_{_{sb}})}{R} dS' ight] \end{aligned}$
III.11	Πυκνότητα ισοδύναμου συστήματος χωρικά διανεμημένων φορτίων (ελεύθερα φορτία)	$ ho_f = ho + ho_b$

III.12	Πυκνότητα ισοδύναμου συστήματος επιφανειακά διανεμημένων φορτίων	$ ho_{s\!f}= ho_s+ ho_{s\!b}$
III.13	Το σύνολο των φορτίων πόλωσης είναι ίσο με μηδέν	$Q_b = 0$

ΤΑ ΠΕΔΙΑΚΑ ΜΕΓΕΘΗ ΣΕ ΔΙΗΛΕΚΤΡΙΚΑ ΜΕΣΑ

III.14	Ο νόμος του Gauss σε διηλεκτρικά μέσα	$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_o} (\rho + \rho_b) \Rightarrow \nabla \cdot \mathbf{D} = \rho$
III.15	Το διάνυσμα της διηλεκτρικής μετατόπισης	$\mathbf{D} = arepsilon_o \mathbf{E} + \mathbf{P}$
III.16	Σχέσεις μεταξύ των διανυσμάτων P , E , D σε γραμμικά ισότροπα διηλεκτρικά υλικά, (όπου x _e η ηλεκτρική (ή διηλεκτρική) επιδεκτικότητα του υλικού)	$\mathbf{P} = x_e arepsilon_o \mathbf{E}$ $\mathbf{D} = arepsilon_0 \mathbf{E} + x_e arepsilon_0 \mathbf{E} = arepsilon_0 (1 + x_e) \mathbf{E} = arepsilon \mathbf{E}$
III.17	Σχετική διηλεκτρική σταθερά του υλικού	$\varepsilon_r = 1 + x_e$
III.18	Σχέση μεταξύ των διανυσμάτων D και P	$\mathbf{D} = \varepsilon_r \varepsilon_0 \mathbf{E} = \frac{1 + x_e}{x_e} \mathbf{P} = \frac{\varepsilon_r}{x_e} \mathbf{P} = \frac{\varepsilon_r}{\varepsilon_r - 1} \mathbf{P} = \frac{\varepsilon}{\varepsilon - \varepsilon_0} \mathbf{P}$

Οριακές Σύνθηκες Στη Διαχωριστική Επιφανεία Δυο Διηλεκτρικών

III.19	Οριακές συνθήκες στη διαχωριστική επιφάνεια για την ηλεκτρική πεδιακή ένταση και τη διηλεκτρική μετατόπιση (φορά του διανύσματος n ₀ από το μέσο 1 προς το μέσο 2)	$egin{aligned} E_{ ext{t}_1} &= E_{ ext{t}_2} \ D_{ ext{n}_2} - D_{ ext{n}_1} &= ho_s \Rightarrow arepsilon_o(E_{ ext{n}_2} - E_{ ext{n}_1}) = ho_{s\!f} \end{aligned}$
III.20	Οριακή συνθήκη στη διαχωριστική επιφάνεια για την πόλωση	$P_{\mathrm{n}_1}-P_{\mathrm{n}_2}= ho_{sb}$
III.21	Οριακές συνθήκες στην περίπτωση που το μέσο 1 είναι αγώγιμο, ενώ το μέσο 2 διηλεκτρικό με διηλεκτρική σταθερά $\varepsilon = \varepsilon_r \varepsilon_0$	$\begin{array}{l} D_n = \rho_s \\ P_n = -\rho_{sb} \\ \varepsilon_0 E_n = \rho_{sf} \end{array}$
111.22	Σχέση μεταξύ $ ho_{sb}$ και $ ho_s$	$\rho_{sb} = -P_n = -\frac{\varepsilon - \varepsilon_o}{\varepsilon} D_n = -\frac{\varepsilon_r - 1}{\varepsilon_r} \rho_s$
III.23	Σχέση μεταξύ $ ho_{sf}$ και $ ho_{s}$	$\rho_{s\!f} = \varepsilon_0 \frac{D_n}{\varepsilon} = \frac{D_n}{\varepsilon_r} = \frac{\rho_s}{\varepsilon_r}$

III.24	Σχέση μεταξύ $ ho_b$ και $ ho$	$\rho_{b} = -\frac{\varepsilon_{r} - 1}{\varepsilon_{r}}\rho$
111.25	Σχέση μεταξύ των ρ , ρ_f και ρ_b	$ ho_f = ho + ho_b = rac{ ho}{arepsilon_r} = -rac{ ho_b}{arepsilon_r-1}$
111.26	Πυκνότητα των δέσμιων φορτίων σε μη ομογενές διηλεκτρικό	$\rho_{b} = -\frac{\varepsilon_{r} - 1}{\varepsilon_{r}}\rho - \frac{\mathbf{D} \cdot \nabla(\varepsilon_{r})}{\varepsilon_{r}^{2}} = -\frac{\varepsilon_{r} - 1}{\varepsilon_{r}}\rho - \varepsilon_{0}\frac{\mathbf{E} \cdot \nabla(\varepsilon_{r})}{\varepsilon_{r}}$
III.27	Πυκνότητα των ελεύθερων φορτίων σε μη ομογενές διηλεκτρικό	$ ho_f = ho_b + ho = rac{ ho - arepsilon_0 \mathbf{E} \cdot abla (arepsilon_r)}{arepsilon_r}$

Πολώση Διηλεκτρικού στο Πέδιο Επιπεδού Πυκνώτη

111.28	Διηλεκτρική μετατόπιση $\mathbf{D} = \mathbf{D}_0 = \rho_s \mathbf{x}_0$	$+Q$ \mathbf{E}_{0} \mathbf{E}_{0} \mathbf{E}_{0} \mathbf{D}_{0} \mathbf{E}_{0}
111.29	Ηλεκτρική πεδιακή ένταση $\mathbf{E} = \frac{\mathbf{D}}{\varepsilon} = \frac{\rho_s}{\varepsilon_r \varepsilon_0} \mathbf{x}_0 = \frac{\mathbf{E}_0}{\varepsilon_r}$	$\mathbf{P}_{0} = 0$ $\varepsilon = \varepsilon_{0}$ $\mathbf{P}_{0} = 0$ $\varepsilon = \varepsilon_{r} \varepsilon_{0}$ $\mathbf{P}_{0} = 0$ \mathbf{P}
111.30	Πόλωση	$\mathbf{P} = \frac{\overline{\varepsilon_r - 1}}{\varepsilon_r} \mathbf{D} = \frac{\varepsilon_r - 1}{\varepsilon_r} \rho_s \mathbf{x}_0 = \varepsilon_0 (\mathbf{E}_0 - \mathbf{E})$
III.31	Πυκνότητα των δέσμιων φορτίων στη ν αριστερή πλάκα $x=0$	$ ho_{sb}=-rac{arepsilon_r-1}{arepsilon_r} ho_s$
111.32	Πυκνότητα των ελεύθερων φορτίων στην αριστερή πλάκα $x = 0$	$\rho_{s\!f}=\rho_s+\rho_{sb}=\frac{\rho_s}{\varepsilon_r}$
III.33	Πυκνότητα χωρικών φορτίων πόλωσης	$\rho_b = -\nabla \cdot \mathbf{P} = 0$

Δύο Διηλεκτρικά Στρωματά Μετάξυ των Οπλισμών Σφαιρικού Πυκνώτη

111.34	Διηλεκτρική μετατόπιση $\mathbf{D} = \frac{Q}{4\pi r^2} \mathbf{r}_o, \ \big(a < r < b \big)$	$ε_2 = ε_{r2}ε_0$ $ε_1 = ε_{r1}ε_0$ c b
111.35	Ηλεκτρική πεδιακή ένταση $\begin{split} \mathbf{E}_1 &= \frac{\mathbf{D}}{\varepsilon_1} = \frac{Q}{4\pi\varepsilon_1 r^2} \mathbf{r}_0 , \ (a < r < c) \\ \mathbf{E}_2 &= \frac{\mathbf{D}}{\varepsilon_2} = \frac{Q}{4\pi\varepsilon_2 r^2} \mathbf{r}_0 , \ (c < r < b) \end{split}$	(1)
111.36	Πόλωση	$\begin{split} \mathbf{P}_{1} &= \frac{\varepsilon_{1} - \varepsilon_{0}}{\varepsilon_{1}} \mathbf{D} = \frac{Q(\varepsilon_{1} - \varepsilon_{0})}{4\pi\varepsilon_{1}r^{2}} \mathbf{r}_{0} , (a < r < c) \\ \mathbf{P}_{2} &= \frac{\varepsilon_{2} - \varepsilon_{0}}{\varepsilon_{2}} \mathbf{D} = \frac{Q(\varepsilon_{2} - \varepsilon_{0})}{4\pi\varepsilon_{2}r^{2}} \mathbf{r}_{0} , (c < r < b) \end{split}$
111.37	Επιφανειακές πυκνότητες των φορτίων πόλωσης στις επιφάνειες των δύο οπλισμών	$egin{aligned} & ho_{sb1}(r=a) = -rac{Q(arepsilon_1-arepsilon_0)}{4\piarepsilon_1a^2} \ & ho_{sb2}(r=b) = rac{Q(arepsilon_2-arepsilon_0)}{4\piarepsilon_2b^2} \end{aligned}$
111.38	Επιφανειακές πυκνότητες των φορτίων πόλωσης στις δύο όψεις της διαχωριστικής επιφάνειας των δύο υλικών	$\rho_{sb1}(r=c) = \frac{Q(\varepsilon_1 - \varepsilon_0)}{4\pi\varepsilon_1 c^2}$ $\rho_{sb2}(r=c) = -\frac{Q(\varepsilon_2 - \varepsilon_0)}{4\pi\varepsilon_2 c^2}$
111.39	Επιφανειακές πυκνότητες των ελεύθερων φορτίων στις τρεις διαχωριστικές επιφάνειες	$\rho_{sf}(r=a) = \frac{Q}{4\pi\varepsilon_{r1}a^2} = \frac{\rho_{s1}(r=a)}{\varepsilon_{r1}}$ $\rho_{sf}(r=c) = \frac{Q}{4\pi c^2} \left(\frac{1}{\varepsilon_{r2}} - \frac{1}{\varepsilon_{r1}}\right)$ $\rho_{sf}(r=b) = -\frac{Q}{4\pi\varepsilon_{r2}b^2} = \frac{\rho_{s2}(r=b)}{\varepsilon_{r2}}$

Πολώση Διηλεκτρικού στο Πεδιό Κυλινδρικού Πυκνώτη με μη Ομογενές Διηλεκτρικό

III.40	Διηλεκτρική σταθερά $\varepsilon(r)=\varepsilon_{\scriptscriptstyle 0}\varepsilon_{\scriptscriptstyle r}(r)=\varepsilon_{\scriptscriptstyle 0}\frac{b}{r}$	$\varepsilon = \varepsilon(r)$
III.41	Διηλεκτρική μετατόπιση $\mathbf{D}=\frac{Q}{2\pi r}\mathbf{r}_{\!_0}$	
III.42	Ηλεκτρική πεδιακή ένταση $\mathbf{E}=\frac{\mathbf{D}}{\varepsilon(r)}=\frac{Q}{2\pi\varepsilon_0 b}\mathbf{r}_0$	
III.43	Πόλωση	$\mathbf{P} = \frac{\varepsilon_r - 1}{\varepsilon_r} \mathbf{D} = \frac{Q}{2\pi b} \frac{b - r}{r} \mathbf{r}_0$

III.44	Επιφανειακές πυκνότητες των φορτίων πόλωσης στις επιφάνειες των δύο οπλισμών	$\begin{split} \rho_{sb}(r=a) &= -\frac{Q(b-a)}{2\pi a b} \\ \rho_{sb}(r=b) &= 0 \end{split}$
111.45	Πυκνότητα χωρικών φορτίων πόλωσης	$ ho_b=rac{Q}{2\pi br}$
III.46	Πυκνότητα των αληθινών χωρικών φορτίων	$\rho = -\frac{1}{r} \frac{\partial(rD)}{\partial r} = 0$
111.47	Πυκνότητες για τα ελεύθερα φορτία	$\begin{split} \rho_{sf}(r=a) &= \rho_s(r=a) + \rho_{sb}(r=a) = \frac{Q}{2\pi b} \\ \rho_f &= \rho + \rho_b = \rho_b = \frac{Q}{2\pi b r} \\ \rho_{sf}(r=b) &= \rho_s(r=b) + \rho_{sb}(r=b) = \rho_s(r=b) = -\frac{Q}{2\pi b} \end{split}$

Δυναμείς σε Διηλεκτρικά Υλικά

III.48	Πυκνότητα δύναμης που ασκείται στα χωρικά διανεμημένα φορτία (αληθινά και πόλωσης) σε διηλεκτρικό υλικό	$f = \rho \mathbf{E} - (\nabla \cdot \mathbf{P}) \mathbf{E} = \frac{\rho}{\varepsilon_r} \mathbf{E} - \frac{\varepsilon_0}{\varepsilon_r} (\mathbf{E} \cdot \nabla \varepsilon_r) \mathbf{E}$
III.49	Πυκνότητα δύναμης που ασκείται σε πολωμένο διηλεκτρικό	$f = \frac{d\mathbf{F}}{dV} = \rho \mathbf{E} + (\mathbf{P} \cdot \nabla) \mathbf{E} = \rho \mathbf{E} + \frac{1}{2} (\varepsilon - \varepsilon_0) \nabla (E^2)$
111.50	Το διάνυσμα της μηχανικής τάσης που εκφράζει την ανά μονάδα επιφανείας δύναμη	$T_{_n} = arepsilon_0 igg[(\mathbf{n}_{_0} \cdot \mathbf{E}) \mathbf{E} - rac{1}{2} E^2 \mathbf{n}_0 igg]$
III.51	Το μέτρο του διανύσματος της τάσης	$T_{_{n}}=rac{1}{2}arepsilon E^{2}$
111.52	Πίεση κάθετα στη διαχωριστική επιφάνεια δύο διηλεκτρικών (φορά από το μέσο 2 προς το μέσο 1)	$\mathbf{p}_{21}=rac{1}{2}ig(arepsilon_2-arepsilon_1ig)\mathrm{E}_1^2\mathbf{n}_0$

IV

ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ

Μέθοδος του Κατοπτρισμού

đ	οορτίο πάνω από αγώγιμο επίπεδο	$ \begin{array}{c} & & & & & & & & & & \\ & & & & & & & & $
IV.1	Τιμή και θέση του κατοπτρικού φορτίου	$q^{\prime}=-q,\qquad h^{\prime}=h$
IV.2	Δύναμη ασκούμενη στο φορτίο από το αγώγιμο επίπεδο	${f F}=-rac{q^2}{16\piarepsilon h^2}{f z}_0$

(Ρορτίο έξω από αγώγιμη σφαίρα	R d q \Leftrightarrow R q' q q
IV.3	Λόγος αποστάσεων σημείων μηδενικού δυναμικού από τα φορτία (Απολλώνεια σφαίρα)	$\frac{r_1}{r_2} = -\frac{q}{q'} = k = const.$
IV.4	Τιμή του κατοπτρικού φορτίου και απόστασή του από το κέντρο της σφαίρας	$q' = -\frac{R}{d}q$, $b = \frac{R^2}{d}$

Δύο ίσοι, παράλληλοι, φορτισμένοι κύ- λινδροι απείρου μήκους με ίσα και αντί- θετα φορτία		$\begin{array}{c c} & & & & \\ R & & & \\ \hline R & & \\ \hline \beta & & \\ \hline h & & \\ \hline \end{array} \begin{array}{c} & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ \hline \end{array} \end{array}$
IV.5	Διαφορά δυναμικού μεταξύ των αγωγών	$U = \frac{\rho_l}{\pi \varepsilon} \ln \left(\frac{h + \sqrt{h^2 - R^2}}{R} \right)$
IV.6	Ανά μονάδα μήκους χωρητικότητα του συστήματος	$C = \frac{\rho_l}{U} = \frac{\pi\varepsilon}{\ln\left(\frac{h + \sqrt{h^2 - R^2}}{R}\right)}$

IV.7	Διαφορά δυναμικού μεταξύ των αγωγών $(h\gg R)$	$U = \frac{\rho_l}{\pi \varepsilon} \ln \left(\frac{2h}{R} \right)$
IV.8	Ανά μονάδα μήκους χωρητικότητα του συστήματος $(h \gg R)$	$C = \frac{\rho_l}{U} = \frac{\pi\varepsilon}{\ln\left(\frac{2h}{R}\right)}$
Φ	ορτισμένος κύλινδρος παράλληλος προς αγώγιμο επίπεδο	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
IV.9	Δυναμικό του κυλίνδρου ως προς το αγώγιμο επίπεδο	$U = \frac{\rho_l}{2\pi\varepsilon} \ln\left(\frac{h + \sqrt{h^2 - R^2}}{R}\right)$
IV.10	Ανά μονάδα μήκους χωρητικότητα του συστήματος	$C = \frac{\rho_l}{U} = \frac{2\pi\varepsilon}{\ln\left(\frac{h + \sqrt{h^2 - R^2}}{R}\right)}$
IV.11	Δυναμικό του κυλίνδρου ως προς το αγώγιμο επίπεδο $(h \gg R)$	$U = \frac{\rho_l}{2\pi\varepsilon} \ln\left(\frac{2h}{R}\right)$
IV.12	Ανά μονάδα μήκους χωρητικότητα του συστήματος $(h \gg R)$	$C = \frac{\rho_l}{U} = \frac{2\pi\varepsilon}{\ln\left(\frac{2h}{R}\right)}$
Φορτίο κοντά στη διαχωριστική επιφάνεια δύο διηλεκτρικών μέσων		$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$
IV.13	Τιμές κατοπτρικών φορτίων	$q' = rac{arepsilon_1 - arepsilon_2}{arepsilon_1 + arepsilon_2} q , \qquad q'' = rac{2arepsilon_2}{arepsilon_1 + arepsilon_2} q$
		$\blacktriangle \bullet \rho_i \qquad \qquad \blacktriangle \bullet \rho_i \qquad \qquad \blacktriangle \bullet \hspace{1.5cm} ''$
Γραμμικό φορτίο κοντά στη διαχωρι- στική επιφάνεια δύο διηλεκτρικών μέσων		$ \begin{array}{c} \begin{array}{c} & & & \\ h \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \end{array} \end{array} \begin{array}{c} \varepsilon_{1} \\ \varepsilon_{2} \end{array} \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ \hline \\ \\ \end{array} \begin{array}{c} & \\ \end{array} \end{array} \begin{array}{c} & & \\ \hline \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} & \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} & \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array}
IV.14	Γραμμικές πυκνότητες ειδώλων	$ \rho_l' = \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \rho_l, \qquad \rho_l'' = \frac{2\varepsilon_2}{\varepsilon_1 + \varepsilon_2} \rho_l $

V

ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΡΟΗΣ ΜΟΝΙΜΩΝ ΡΕΥΜΑΤΩΝ

Εξίδωση Σύνεχειας – Νόμος του Οημ

V.1	Ένταση ηλεκτρικού ρεύματος και πυκνότητα ρεύματος	$I = \iint_{S} \mathbf{J} \cdot d\mathbf{S} = \iint_{S} \mathbf{J} \cdot \mathbf{n} dS$
V.2	Εξίσωση συνέχειας της ηλεκτρικής ροής	$\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0$
V.3	Εξίσωση συνέχειας της ηλεκτρικής ροής στη μόνιμη κατάσταση	$ \oint \mathbf{J} \cdot d\mathbf{S} = 0 $ (ολοκληρωτική μορφή) $\nabla \cdot \mathbf{J} = 0 $ (διαφορική μορφή)
V.4	Νόμος του Ohm (σημειακή διατύπωση)	$\mathbf{J} = \sigma \mathbf{E}$

Ηλεκτρεγερτική Δύναμη – Ηλεκτρική Αντιστάση

V.5	Νόμος του Ohm (μακροσκοπική διατύπωση)	V = RI
V.6	Ηλεκτρική αντίσταση αγωγού αγωγιμότητας σ , μήκους l και διατομής S	$R = \frac{V}{I} = \frac{1}{\sigma} \frac{l}{S}$
V.7	Συνολική αντίσταση n αντιστάσεων συνδεδεμένων σε σειρά	$R = R_1 + R_2 + \ldots + R_n = \sum_{i=1}^n R_i$
V.8	Συνολική αντίσταση n αντιστάσεων συνδεδεμένων παράλληλα	$R = \left(\sum_{i=1}^n rac{1}{R_i} ight)^{\!-1}$
V.9	Ηλεκτρεγερτική δύναμη E . $\mathbf{E}_t = \mathbf{E} + \mathbf{E}_s$, όπου \mathbf{E}_s η "ηλεκτροχωριστική" πεδιακή ένταση της πηγής.	$E = \int_{(-)}^{(+)} \mathbf{E}_s \cdot d\mathbf{l} = \oint_C \mathbf{E}_s \cdot d\mathbf{l} = \oint_C \mathbf{E}_t \cdot d\mathbf{l}$
V.10	Ηλεκτρική τάση στην έξοδο πηγής με εσωτερική αντίσταση r και αντίσταση εξωτερικού φορτίου R	E = I(R+r)
V.11	Νόμος ρευμάτων του Kirchhoff	$\sum_{i=1}^n I_i = 0$

V.12	Νόμος τάσεων του Kirchhoff (όπου n ο αριθμός των πηγών και k ο αριθμός των αντιστάσεων του βρόχου)	$\sum_{i=1}^{n} E_{i} = \sum_{i=1}^{k} I_{i} R_{i} + \sum_{i=1}^{n} I_{i} r_{i}$
V.13	Ηλεκτρική αντίσταση αγωγού μεταβλητής διατομής	$R = \frac{V}{I} = \frac{1}{\sigma} \frac{\int_{(l)} \mathbf{E} \cdot d\mathbf{l}}{\iint_{S} \mathbf{E} \cdot d\mathbf{S}}$
V.14	Χρόνος χαλάρωσης T μέσου με διηλεκτρική σταθερά ε και αγωγιμότητα σ	$RC = \frac{\varepsilon}{\sigma} = T$
V.15	Υπολογισμός ηλεκτρικής αντίστασης με βάση τις αντιστάσεις μεταξύ απειροστά γειτονικών ισοδυναμικών επιφανειών	$R = \int_0^l \frac{du_1}{\iint_s \frac{\sigma h_2 h_3}{h_1} du_2 du_3}$
V.16	Υπολογισμός ηλεκτρικής αντίστασης με βάση τις αντιστάσεις των απειροστών ρευματικών σωλήνων	$R = \frac{1}{\iint_{s} \frac{du_{2}du_{3}}{\int_{0}^{l} \frac{h_{1}}{\sigma h_{2}h_{3}} du_{1}}}$
V.17	Νόμος του Joule – Ισχύς απωλειών λόγω θερμότητας	$p = \frac{dP}{dV} = \mathbf{J} \cdot \mathbf{E} = \sigma \mathbf{E} \cdot \mathbf{E} = \frac{\mathbf{J} \cdot \mathbf{J}}{\sigma}$

ΕΞΙΣΩΣΗ LAPLACE – ΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ

V.18	Διαφορική εξίσωση Laplace για το πεδίο ροής μονίμων ρευμάτων	$\nabla \cdot \nabla \phi = \nabla^2 \phi = 0$
V.19	Οριακές συνθήκες σε διαχωριστική επιφάνεια	$ \begin{aligned} (\mathbf{J}_1 - \mathbf{J}_2) \cdot \mathbf{n}_0 &= 0 \implies J_{\mathbf{n}_1} = J_{\mathbf{n}_2} \\ (\mathbf{E}_1 - \mathbf{E}_2) \times \mathbf{n}_0 &= 0 \implies \frac{J_{\mathbf{t}_1}}{\sigma_1} = \frac{J_{\mathbf{t}_2}}{\sigma_2} \end{aligned} $
V.20	Οριακές συνθήκες σε διαχωριστική επιφάνεια κατά το μεταβατικό φαινόμενο	$J_{{}_{\mathrm{n}_1}}-J_{{}_{\mathrm{n}_2}}=rac{\partial ho_s}{\partial t}$

	Γειωτές		
	Σφαιρικός Γειωτής ακτίνας α		
V.21	Συνάρτηση δυναμικού	$\phi(r) = \frac{I}{4\pi\sigma r}$	
V.22	Τάση διάβασης	$U_{_0} = rac{I}{4\pi\sigma a}$	

V.23 Αντίσταση διάβασης γειωτή $R_0 = \frac{1}{4\pi\sigma a}$	V.23	Αντίσταση διάβασης γειωτή	$R_{0} = \frac{1}{4\pi\sigma a}$
--	------	---------------------------	----------------------------------

	Ημισφαιρικός Γειωτής ακτίνας α	
V.24	Συνάρτηση δυναμικού	$\phi(r) = \frac{I}{2\pi\sigma r}$
V.25	Τάση διάβασης	$U_{_0} = rac{I}{2\pi\sigma a}$
V.26	Αντίσταση διάβασης γειωτή	$R_{\scriptscriptstyle 0} = \frac{1}{2\pi\sigma a}$

	Ελλειψοειδής Γειωτής	σ
V.27	Συνάρτηση Δυναμικού	$\phi(x,y) = \frac{I}{8\pi\sigma l} \ln\left[\frac{x+l+\sqrt{(x+l)^2+y^2}}{x-l+\sqrt{(x-l)^2+y^2}}\right]$
V.28	Τάση Διάβασης	$U_{0} = \frac{I}{8\pi\sigma l} \ln\left(\frac{a+l}{a-l}\right)$
V.29	Αντίσταση διάβασης γειωτή	$R_{_0} = \frac{1}{8\pi\sigma l} \ln \left(\frac{a+l}{a-l}\right)$

Ημιελλειψοειδής Επιφανειακός Γειωτής (οι ίδιες σχέσεις ισχύουν και για τον κατακόρυφο με απλή αλλαγή αξόνων (όπου x θέτουμε y και όπου y θέτουμε το -x))		$\sigma=0$ y x x I x I
V.30	Συνάρτηση δυναμικού	$\phi(x,y) = \frac{I}{4\pi\sigma l} \ln\left[\frac{x+l+\sqrt{(x+l)^2+y^2}}{x-l+\sqrt{(x-l)^2+y^2}}\right]$
V.31	Τάση διάβασης	$U_{_0} = \frac{I}{4\pi\sigma l} \ln \left(\frac{a+l}{a-l} \right)$

V.32	Αντίσταση διάβασης γειωτή	$R_0 = \frac{1}{4\pi\sigma l} \ln\left(\frac{a+l}{a-l}\right)$
------	---------------------------	--

Σωληνωτός Γειωτής		d
V.33	Συνάρτηση δυναμικού	$\phi(x,y) = \frac{I}{8\pi\sigma l} \ln\left[\frac{x+l+\sqrt{(x+l)^2+y^2}}{x-l+\sqrt{(x-l)^2+y^2}}\right]$
V.34	Τάση διάβασης	$\overline{U_{_{0}}}=rac{I}{8\pi\sigma l}\ln\!\left(\!rac{l+\sqrt{l^{2}+d^{2}\!/\!4}}{-\!l+\sqrt{l^{2}+d^{2}\!/\!4}} ight)$
V.35	Αντίσταση διάβασης γειωτή	$R_{ m o} = rac{1}{8\pi\sigma l} \ln \! \left(rac{l + \sqrt{l^2 + d^2/4}}{-l + \sqrt{l^2 + d^2/4}} ight)$
V.36	Τάση διάβασης (για $d \ll 2l$)	${U_0} \cong rac{I}{{4\pi \sigma l}} {\ln }{\left({rac{{4l}}{d}} ight)}$
V.37	Αντίσταση διάβασης γειωτή (για $ d \ll 2l$)	$R_0 \cong rac{1}{4\pi\sigma l}\lniggl(rac{4l}{d}iggr)$

Επιφανειακός Σωληνωτός Γειωτής		$\sigma = 0$
V.38	Συνάρτηση δυναμικού	$\phi(x,y) = \frac{I}{4\pi\sigma l} \ln\left[\frac{x+l+\sqrt{(x+l)^2+y^2}}{x-l+\sqrt{(x-l)^2+y^2}}\right]$
V.39	Τάση διάβασης	$U_{0} = \frac{I}{4\pi\sigma l} \ln\left(\frac{l + \sqrt{l^{2} + d^{2}/4}}{-l + \sqrt{l^{2} + d^{2}/4}}\right)$
V.40	Αντίσταση διάβασης γειωτή	$R_{_{0}}=rac{1}{4\pi\sigma l}\ln\!\left(\!rac{l+\sqrt{l^{2}+d^{2}/4}}{-l+\sqrt{l^{2}+d^{2}/4}} ight)$
V.41	Τάση διάβασης (για $d \ll l$)	${U_0} \cong rac{I}{{2\pi \sigma l}} {\ln }{\left({rac{{4l}}{d}} ight)}$
V.42	Αντίσταση διάβασης γειωτή (για $d \ll l$)	$R_{_{0}}\congrac{1}{2\pi\sigma l}\lniggl(rac{4l}{d}iggr)$

VI

ΤΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ

ΒΑΣΙΚΕΣ ΕΝΕΡΓΕΙΑΚΕΣ ΣΧΕΣΕΙΣ ΤΟΥ ΠΕΔΙΟΥ

VI.1	Πυκνότητα ενέργειας του ηλεκτρικού πεδίου σε γραμμικό και ισότροπο μέσο	$w_{_e}=rac{1}{2}arepsilon E^2$
VI.2	Πυκνότητα ενέργειας του μαγνητικού πεδίου σε γραμμικό και ισότροπο μέσο	$w_{_{m}}=rac{1}{2}\mu H^{2}$
VI.3	Πυκνότητα ενέργειας του ηλεκτρομαγνητικού πεδίου σε γραμμικό και ισότροπο μέσο	$w=rac{1}{2}arepsilon E^2+rac{1}{2}\mu H^2$
VI.4	Ειδική ισχύς απωλειών Joule όπου Τ = ε / σ είναι η χρονική σταθερά χαλάρωσης γραμμικού και ισότροπου μέσου	$p_t = \sigma E^2 = rac{arepsilon}{\mathrm{T}} E^2$
VI.5	Πυκνότητα διαδιδόμενης ισχύος (πραγματικό διάνυσμα Poynting)	$\mathbf{P} = \mathbf{E} imes \mathbf{H}$
VI.6	Πυκνότητα ενέργειας του ηλεκτρικού πεδίου σε μη γραμμικό μέσο	$w_{_{e}}=\int_{_{0}}^{^{\mathbf{D}}}\mathbf{E}\cdot d\mathbf{D}$
VI.7	Πυκνότητα ενέργειας του μαγνητικού πεδίου σε μη γραμμικό μέσο	$w_{_{m}}=\int_{_{0}}^{^{\mathbf{B}}}\mathbf{H}\cdot d\mathbf{B}$
VI.8	Ειδική ισχύς απωλειών Joule όπου T = ε / σ είναι η χρονική σταθερά χαλάρωσης ανομοιογενούς, ανισότροπου ή μη γραμμικού μέσου	$p_t = \mathbf{J} \cdot \mathbf{E}$

Εξιέωσεις του Maxwell

VI.9	Εξίσώση στροφής της έντασης του ηλεκτρικού πεδίου (1 ^η εξίσωση Maxwell)	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
VI.10	Εξίσώση στροφής της έντασης του μαγνητικού πεδίου (2 ^η εξίσωση Maxwell)	$ abla imes \mathbf{H} = \mathbf{J} + rac{\partial \mathbf{D}}{\partial t}$
VI.11	Καταστατικές εξισώσεις	$ \begin{split} \mathbf{D} &= \varepsilon \mathbf{E} \\ \mathbf{B} &= \mu \mathbf{H} \\ \mathbf{J} &= \sigma \mathbf{E} \end{split} $

VI.12	Εξίσωση απόκλισης της μαγνητικής επαγωγής (3 ^η εξίσωση Maxwell)	$\nabla \cdot \mathbf{B} = 0$
VI.13	Εξίσωση απόκλισης της διηλεκτρικής μετατόπισης (4 ^η εξίσωση Maxwell)	$\nabla \cdot \mathbf{D} = \rho$
VI.14	Μαγνητική ροή που διέρχεται από επιφάνεια S	$\Phi = \iint_{S} \mathbf{B} \cdot d\mathbf{S}$
VI.15	Ολοκληρωτική μορφή της 3 ^{ης} εξίσωσης Maxwell	$\oint \!$
VI.16	Νόμος του Gauss (ολοκληρωτική μορφή της 4 ^{ης} εξίσωσης Maxwell)	$\oint \!$
VI.17	Εξίσωση συνέχειας	$\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0$
VI.18	Εξίσωση συνέχειας για χρονικά αμετάβλητες καταστάσεις	$ abla \cdot \mathbf{J} = 0$

	Οριακές Σύνθηκες σε Διαχωριστικές Επιφανείες	
VI.19	Συνέχεια της κάθετης στην επιφάνεια συνιστώσας της μαγνητικής επαγωγής $(\mathbf{n}_0 $ μοναδιαίο κάθετο στην επιφάνεια διάνυσμα με κατεύθυνση από το μέσο 1 προς το μέσο 2)	$(\mathbf{B}_2 - \mathbf{B}_1) \cdot \mathbf{n}_0 = 0$ $\acute{\mathbf{\eta}} B_{\mathbf{n}_2} = B_{n_1}$
VI.20	Διαφορά των κάθετων στην επιφάνεια (με επιφανειακά φορτία) συνιστωσών της διηλεκτρικής μετατόπισης	$ig(\mathbf{D}_2 - \mathbf{D}_1 ig) \cdot \mathbf{n}_0 = ho_s \hspace{0.2cm} \acute{\eta} \hspace{0.2cm} D_{\mathrm{n}_2} - D_{\mathrm{n}_1} = ho_s$
VI.21	Συνέχεια της εφαπτομενικής στην επιφάνεια συνιστώσας της έντασης του μαγνητικού πεδίου	$\mathbf{n}_{0} \times (\mathbf{E}_{1} - \mathbf{E}_{2}) = 0 \acute{\eta} E_{t_{1}} - E_{t_{2}} = 0$
VI.22	Διαφορά των εφαπτομενικών στην επιφάνεια (με επιφανειακά ρεύματα) συνιστωσών της έντασης μαγνητικού πεδίου $\mathbf{\kappa}_0 = \mathbf{t}_0 \times \mathbf{n}_0$, \mathbf{t}_0 : μοναδιαίο εφαπτομενικό διάνυσμα	$\mathbf{n}_{0} imes \left(\mathbf{H}_{2} - \mathbf{H}_{1} ight) = \mathbf{K} \ \acute{\eta} \ H_{\mathrm{t}_{1}} - H_{\mathrm{t}_{2}} = \mathbf{K} \cdot \mathbf{\kappa}_{0}$
VI.23	Διαφορά των εφαπτομενικών στην επιφάνεια (για απουσία επιφανειακών ρευμάτων) συνιστωσών της έντασης μαγνητικού πεδίου	$\mathbf{n}_{_{0}} imesig(\mathbf{H}_{_{2}}-\mathbf{H}_{_{1}}ig)=0$ $\acute{\eta}$ $H_{_{\mathbf{t}_{1}}}=H_{_{\mathbf{t}_{2}}}$

NOMOS THE ΔΥΝΑΜΗΣ LORENZ

VI.24	Νόμος της δύναμης Lorenz σε σημειακή μορφή	$\mathbf{f} = ho \left(\mathbf{E} + \mathbf{v} imes \mathbf{B} ight)$
VI.25	Νόμος της δύναμης Lorenz σε ολοκληρωτική μορφή	$\iiint_{V} \mathbf{f} dV = \iiint_{V} \rho \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) dV$

ΜΑΓΝΗΤΟΣΤΑΤΙΚΟ ΠΕΔΙΟ

Nomos toy Ampere – Παραδειγματα

VII.1	Νόμος του Ampère	$ abla imes \mathbf{H} = \mathbf{J}$ (διαφορική μορφή) $\oint_C \mathbf{H} \cdot d\mathbf{l} = I$ (ολοκληρωτική μορφή)
VII.2	Ένταση μαγνητικού πεδίου ευθύγραμμου αγωγού αμελητέας διατομής	$\mathbf{H}=rac{I}{2\pi r}oldsymbol{arphi}_{0}$
VII.3	Ένταση μαγνητικού πεδίου ευθύγραμμου αγωγού κυκλικής διατομής με σταθερή πυκνότητα ρεύματος	$egin{array}{ll} r\geq a: & \mathbf{H}=rac{I}{2\pi r}oldsymbol{arphi}_0 \ r\leq a: & \mathbf{H}=rac{Ir}{2\pi a^2}oldsymbol{arphi}_0 \end{array}$
VII.4	Ένταση μαγνητικού πεδίου ομοαξονικού καλωδίου	$r \leq a: \qquad \mathbf{H} = \frac{Ir}{2\pi a^2} \boldsymbol{\varphi}_0$ $b \geq r \geq a: \qquad \mathbf{H} = \frac{I}{2\pi r} \boldsymbol{\varphi}_0$ $c \geq r \geq b: \qquad \mathbf{H} = \frac{I}{2\pi r} \frac{c^2 - r^2}{c^2 - b^2} \boldsymbol{\varphi}_0$ $r \geq c: \qquad \mathbf{H} = 0$

Μαγνητικά Δύναμικα – Μαγνητική Ροπή

VII.5	Βαθμωτό μαγνητικό δυναμικό	$\mathbf{H}=- abla \phi_{m}$
VII.6	Διανυσματικό μαγνητικό δυναμικό	$\mathbf{B} = abla imes \mathbf{A}$
VII.7	Διανυσματική εξίσωση Poisson	$ abla^2 \mathbf{A} = -\mu \mathbf{J}$ (διαφορική μορφή) $\mathbf{A} = \frac{\mu}{4\pi} \oint \frac{I d \mathbf{l}}{r}$ (ολοκληρωτική μορφή)
VII.8	Μαγνητική ροπή	$\mathbf{M} = \frac{1}{2} \iiint_{V} \mathbf{r}' \times \mathbf{J} dV$
VII.9	Σχέση μαγνητικής ροπής και διανυσματικού μαγνητικού δυναμικού	$\mathbf{A}=rac{\mu}{4\pi}rac{\mathbf{M} imes \mathbf{r}}{r^3}$
VII.10	Σχέση μαγνητικής ροπής και μαγνητικής επαγωγής	$\mathbf{B} = \frac{\mu}{4\pi} \left[\frac{3(\mathbf{M} \cdot \mathbf{r})\mathbf{r}}{r^5} - \frac{\mathbf{M}}{r^3} \right]$

V	TI.11	Μαγνητική ροπή κυκλικού βρόχου	$\mathbf{M} = \pi a^2 I \mathbf{z}_0$

ΝΟΜΟΣ ΒΙΟΤ-SAVARD

VII.12	Νόμος των Biot-Savard	$\mathbf{B} = \frac{\mu}{4\pi} \iiint_{V} \frac{\mathbf{J} \times \mathbf{r}}{r^{3}} dV$
VII.13	Νόμος των Biot-Savard για συρματόμορφο αγωγό	$\mathbf{B} = \frac{\mu I}{4\pi} \oint_C \frac{d\mathbf{l} \times \mathbf{r}}{r^3}$
VII.14	Στοιχειώδης νόμος των Biot-Savart για συρματόμορφο αγωγό	$d\mathbf{B} = \frac{\mu I}{4\pi} \frac{d\mathbf{l} \times \mathbf{r}}{r^3}$

ΠΑΡΑΔΕΙΓΜΑΤΑ

	Β. Πεδίο αγώγι	μης λωρίδας
	Πεδίο αγώγιμης λωρίδας πλάτους $2l$ και επιφανειακής κατανομής ρεύματος I_s	
VII.17	$\mathbf{B} = \frac{\mu_0 I_s}{2\pi} \Biggl\{ \frac{1}{2} \ln \Biggl[\frac{x^2 + (l-y)^2}{x^2 + (l+y)^2} \Biggr] \mathbf{x_0}$	
	$-\left(\arctan\frac{y-l}{x} - \arctan\frac{y+l}{x}\right)\mathbf{y_0}\bigg\}$	$\begin{array}{ $
VII.18	Πεδίο αγώγιμης λωρίδας πλάτους 2 l και επιφανειακής κατανομής ρεύματος I_s με $l \to \infty$ $\mathbf{B} = \frac{\mu_0 I_s}{2} \frac{x}{ x } \mathbf{y}_0$	$x \bigvee^{\mathbf{y'} \leftarrow \mathbf{y'}} d\mathbf{y'} \stackrel{\mathbf{r}}{\longrightarrow} d\mathbf{B} = dB\boldsymbol{\varphi}_0$ $P(x, y, 0)$

	Γ. Πεδίο κυκλικού βρ	όχου ακτίνας α << r
VII.19	Μαγνητικό διανυσματικό δυναμικό $\mathbf{A}=\frac{\mu_0 Ia^2}{4}\frac{\sin\theta}{r^2}\boldsymbol{\varphi}_0$	$d\mathbf{B}_{z}$
VII.20	Μαγνητική επαγωγή $\mathbf{B} = \frac{\mu_0 I a^2}{4r^2} (2\cos\theta \mathbf{r}_0 + \sin\theta \mathbf{\theta}_0)$	P(0,0,z)
VII.21	Πεδίο στον άξονα του κυκλικού βρόχου $\mathbf{B} = \frac{\mu_0 I a^2}{2 \left(a^2 + z^2\right)^{3/2}} \mathbf{z_0}$	
VII.22	Πεδίο στο κέντρο του κυκλικού βρόχου $\mathbf{B}=\frac{\mu_0 I}{2a}\mathbf{z_0}$	$x = a d\varphi' \varphi'_{0}$

Μαγνητική ροη – Αυτεπαγωγή

VII.28	Μαγνητική ροή	$\Phi = \iint_{S} \mathbf{B} \cdot d\mathbf{S} = \oint_{C} \mathbf{A} \cdot d\mathbf{l}$
VII.29	Πεπλεγμένη μαγνητική ροή από πηνίο Ν σπειρών	$\Psi = N\Phi$

VII.30	Συντελεστής αυτεπαγωγής	$L = \frac{\Psi}{I}$
VII.31	Αυτεπαγωγή δακτυλιοειδούς πηνίου ορθογωνικής διατομής (ύψος d , εσω- τερική ακτίνα a, εξωτερική ακτίνα b)	$L = \frac{\mu N^2 d}{2\pi} \ln\left(\frac{b}{a}\right)$
VII.32	Αυτεπαγωγή δακτυλιοειδούς πηνίου κυκλικής διατομής (ύψος d , εμβαδόν διατομής S , απόσταση άξονα πηνίου – κέντρου δακτυλίου r_m)	$L = \frac{\mu N^2 S}{2\pi r_m}$
VII.33	Αυτεπαγωγή σωληνοειδούς μεγάλου μήκους <i>l</i>	$L = \frac{\mu N^2 \pi a^2}{l}$
VII.34	Αυτεπαγωγή ομοαξονικού καλωδίου (a : ακτίνα εσωτερικού αγωγού και b : εσωτερική ακτίνα εξωτερικού αγωγού)	εξωτερική : $L_e = rac{\mu_0}{2\pi} \ln\left(rac{b}{a} ight)$ εσωτερική : $L_i = rac{\mu_0}{8\pi}$
VII.35	Αυτεπαγωγή γραμμής δύο παράλληλων κυλινδρικών αγωγών (d: απόσταση των αξόνων των 2 αγωγών και α: ακτίνα κάθε αγωγού)	$L_e = rac{\mu_0}{\pi} \ln \! \left(rac{d-a}{a} ight)$
VII.36	Αυτεπαγωγή γραμμής δύο παράλληλων κυλινδρικών αγωγών (d>>a, d: απόσταση των αξόνων των 2 αγωγών και a : ακτίνα κάθε αγωγού)	$L_e \cong rac{\mu_0}{\pi} \ln\left(rac{d}{a} ight) onumber \ L \cong rac{\mu_0}{4\pi} + rac{\mu_0}{\pi} \ln\left(rac{d}{a} ight)$

Μαγνητικά Δυναμικά – Μαγνητική Ροπή

VII.37	Δύναμη σε φορτίο q που κινείται με ταχύτητα υ σε ηλεκτρομαγνητικό πεδίο (\mathbf{E}, \mathbf{B})	$\mathbf{F} = q \left(\mathbf{E} + \mathbf{v} imes \mathbf{B} ight)$
VII.38	Νόμος Laplace (στοιχειώδης δύναμη σε απειροστό μήκος ρευματοφόρου αγωγού)	$d\mathbf{F} = I\left(d\mathbf{l} \times \mathbf{B}\right)$
VII.39	Συνολική δύναμη ηλεκτρομαγνητικού πεδίου σε αγώγιμο βρόχο	$\mathbf{F}=0$
VII.40	Ροπή αγώγιμου βρόχου	$\mathbf{T} = \mathbf{M} imes \mathbf{B}$
VII.41	Δυνάμεις μεταξύ παραλλήλων αγωγών	$\mathbf{F}=rac{\mu_0\mathbf{I_1I_2}l}{2\pi a}\mathbf{y_0}$
VII.42	Διαφορά δυναμικού εξαιτίας του φαινομένου Hall	$V_{\scriptscriptstyle H} = \frac{IBl}{NeS} = \frac{IBl}{Neld} = \frac{IB}{Ned}$

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ

Ο Νόμος της Ηλεκτρομαγνητικής Επαγωγής του Faraday

VIII.1	Διαφορική διατύπωση του νόμου της ηλεκτρομαγνητικής επαγωγής του Faraday	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
VIII.2	Ολοκληρωτική διατύπωση του νόμου της ηλεκτρομαγνητικής επαγωγής του Faraday	$\oint_{C} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial \Psi}{\partial t}$

ΕΠΑΓΩΓΗ		
VIII.3	Ηλεκτρική ένταση που αναπτύσσεται σε αγώγιμη ράβδο κινούμενη με ταχύτητα υ σε μαγνητικό πεδίο επαγωγής B	$\mathbf{E}_m = \mathbf{\upsilon} imes \mathbf{B}$
VIII.4	Ηλεκτρεγερτική δύναμη επαγώμενη σε αγώγιμη ράβδο μήκους <i>l</i> κινούμενη κάθετα με ταχύτητα υ σε μαγνητικό πεδίο επαγωγής B	E = vBl
VIII.5	Ηλεκτρεγερτική δύναμη επαγώμενη σε αγώγιμο βρόχο κινούμενο με ταχύτητα υ σε χρονικά αμετάβλητο μαγνητικό πεδίο επαγωγής B	$E = \oint_C (\mathbf{\upsilon} \times \mathbf{B}) \cdot d\mathbf{l}$
VIII.6	Ηλεκτρεγερτική δύναμη επαγώμενη σε αγώγιμο βρόχο κινούμενο με ταχύτητα υ σε χρονικά μεταβαλλόμενο μαγνητικό πεδίο επαγωγής Β	$E = \oint_{C} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot d\mathbf{l}$ $\dot{\mathbf{\eta}}$ $E = -\iint_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} + \oint_{C} (\mathbf{v} \times \mathbf{B}) \cdot d\mathbf{l}$
VIII.7	Ένταση του ηλεκτρικού πεδίου συναρτήσει των δυναμικών ϕ και ${f A}$	$\mathbf{E} = -\nabla\phi - \frac{\partial \mathbf{A}}{\partial t}$

Συζευξη Κυκλωματών

VIII.8	Συντελεστής αμοιβαίας επαγωγής ή αλληλεπαγωγής μεταξύ δύο κυκλωμάτων που διαρρέονται από ρεύματα I_1 και I_2	$M_{21}=rac{\Psi_{21}}{I_2},\qquad M_{12}=rac{\Psi_{12}}{I_1}$
VIII.9	Γενικευμένη σχέση του συντελεστή αμοιβαίας επαγωγής ή τύπος του Neumann	$M = M_{21} = M_{12} = \frac{\mu}{4\pi} \oint_{C_1} \oint_{C_2} \frac{d\mathbf{l}_1 \cdot d\mathbf{l}_2}{\mathbf{r}_{12}}$

VIII.10	Συνολική ροή που διαρρέει το κύκλωμα 1 κατά την παρουσία του κυκλώματος 2	$\Psi_1 = \Psi_{11} + \Psi_{21} = L_1 I_1 + M I_2$
VIII.11	Συντελεστής σύζευξης δύο κυκλωμάτων συναρτήσει των σπειρών τους και των συντελεστών αυτεπαγωγής και αλληλεπαγωγής	$egin{aligned} k &= \sqrt{k_{21}k_{12}}\ k_{ij} &= rac{N_i}{N_j}rac{M}{L_i} \end{aligned}$
VIII.12	Συντελεστής αλληλεπαγωγής δύο κυκλωμάτων συναρτήσει του συντελεστή σύζευζης και των συντελεστών αυτεπαγωγής τους	$M=k\sqrt{L_1L_2}$

ΕΝΕΡΓΕΙΑ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΕΠΑΓΩΓΕΑ

VIII.13	Μεταβολή πυκνότητας ενέργειας μαγνητικού πεδίου	$dw_m = {f H} \cdot d{f B}$
VIII.14	Συνολική ενέργεια μαγνητικού πεδίου πηνίου που διαρρέεται από ρεύμα $I(t)$	$W_m=\int_0^\Psi Id\Psi$
VIII.15	Συνολική ενέργεια μαγνητικού πεδίου πηνίου αυτεπαγωγής L και ρεύματος I στη μόνιμη κατάσταση	$W_m = \frac{1}{2}LI^2 = \frac{1}{2}I\Psi$
VIII.16	Συνολική ενέργεια μαγνητικού πεδίου αγωγών απειροστού πάχους συναρτήσει του διανυσματικού μαγνητικού δυναμικού Α	$W_m = rac{I}{2} \oint_C \mathbf{A} \cdot d\mathbf{l}$
VIII.17	Συνολική ενέργεια μαγνητικού πεδίου αγωγών πεπερασμένης διατομής συναρτήσει του διανυσματικού μαγνητικού δυναμικού Α	$W_m = rac{1}{2} \int \!\!\!\int \!\!\!\int_V {f J} \cdot {f A} d V$
VIII.18	Αμοιβαία ενέργεια δύο αγωγών πεπερασμένης διατομής που διαρρέονται από ρεύματα I_1 και I_2	$W_{12} = \iiint_{V} \mathbf{H}_{1} \cdot \mathbf{B}_{2} dV = \iiint_{V} \mathbf{H}_{2} \cdot \mathbf{B}_{1} dV$ $W_{12} = \frac{\mu I_{1} I_{2}}{4\pi} \oint_{C_{1}} \oint_{C_{2}} \frac{d\mathbf{l}_{1} \cdot d\mathbf{l}_{2}}{r_{12}}$
VIII.19	Ενέργεια πεδίου συστήματος <i>n</i> ρευματοφόρων κυκλωμάτων	$W_m = rac{1}{2} \sum_{i=1}^n I_i \Psi_i = rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n L_{ij} I_i I_j$
VIII.20	Ενέργεια πεδίου συστήματος 2 ρευματοφόρων κυκλωμάτων που δημιουργούν μαγνητικά πεδία επαγωγής B ₁ και B ₂	$W_m = \iiint_V \frac{B_1^2}{2\mu} dV + \iiint_V \frac{B_2^2}{2\mu} dV + \iiint_V \frac{\mathbf{B}_1 \cdot \mathbf{B}_2}{\mu} dV$

Δύναμεις Μετάξυ Κύκλωματών – Πιέση

VIII.21	Βασική εξίσωση δυνάμεων σε κυκλώματα λόγω μεταβολής της ροής ή των ρευμάτων. <i>F_x</i> : συνιστώσα της δύναμης F κατά τον άξονα <i>x</i>	$\sum_{k=1}^n I_k d\Psi_k = F_x dx + dW_m$
---------	---	--

VIII.22	Βασική εξίσωση δυνάμεων σε κυκλώματα στα οποία τα ρεύματα παραμένουν σταθερά	$F_x dx = d W_{\scriptscriptstyle m} = rac{1}{2} \sum_{\scriptscriptstyle k=1}^{\scriptscriptstyle n} I_k d \Psi_k$
VIII.23	Δύναμη σε κύκλωμα σταθερών ρευμάτων	$F_x = \frac{\partial W_m}{\partial x}$ $f_x = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n I_i I_j \frac{\partial L_{ij}}{\partial x}$
VIII.24	Δύναμη μεταξύ κυκλωμάτων σταθερών ρευμάτων συναρτήσει του συντελεστή αλληλεπαγωγής	$F_x = I_1 I_2 \frac{\partial M}{\partial x}$ $\mathbf{F} = I_1 I_2 \nabla M$
VIII.25	Γενική εξίσωση δύναμης μεταξύ κυκλωμάτων σταθερών ρευμάτων	$\mathbf{F}=-rac{\mu I_1I_2}{4\pi}\oint_{C_1}\oint_{C_2}\mathbf{r}_{12}rac{d\mathbf{l}_1\cdot d\mathbf{l}_2}{r_{12}^3}$
VIII.26	Ροπή σε κυκλώματα που διαρρέονται από σταθερά ρεύματα	$\begin{split} T &= \frac{\partial W_m}{\partial \theta} \\ \dot{\eta} \\ T &= I_1 I_2 \frac{\partial M}{\partial \theta} \end{split}$
VIII.27	Δύναμη σε κυκλώματα σταθερών ροών	$F_x = -\frac{\partial W_m}{\partial x}$
VIII.28	Ροπή σε κυκλώματα σταθερών ροών	$\begin{split} T &= -\frac{\partial W_m}{\partial \theta} \\ & \dot{\eta} \\ T &= I_1 I_2 \frac{\partial M}{\partial \theta} \end{split}$
VIII.29	Μαγνητική πίεση που αναπτύσσεται σε απέραντη επίπεδη πολύ λεπτή αγώγιμη ταινία με διανεμημένο επιφανειακό ρεύμα K κάθετο σε εξωτερικό πεδίο B	$p_m = \frac{1}{2} KB = \frac{B^2}{2\mu}$
VIII.30	Μαγνητική πίεση στη διαχωριστική επιφάνεια δύο μέσων με μαγνητικές διαπερατότητες μ_1 και μ_2	$p_{12}=rac{1}{2}(\mu_2-\mu_1)(H_{t_1}^2+rac{\mu_1}{\mu_2}H_{n_1}^2)$
VIII.31	Ελκτική δύναμη ηλεκτρομαγνήτη – οπλισμού όταν στο διάκενο διατομής S υφίσταται σταθερό μαγνητικό πεδίο επαγωγής B = B x ₀	$\mathbf{F} = -\frac{\partial W_m}{\partial x} \mathbf{x}_0 = -\frac{B^2}{2\mu_0} S \mathbf{x}_0$
VIII.32	Πίεση που αντιστοιχεί στη δύναμη της σχέσης VIII.31	$p=rac{B^2}{2\mu_0}$

IX

ΣΙΔΗΡΟΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ

Μαγνητίση – Μαγνητική Επιδεκτικότητα

IX.1	Σχέση μαγνήτισης μαγνητικής επαγωγής και έντασης μαγνητικού πεδίου	$\mathbf{B}=\mu_{0}\left(\mathbf{H}+\mathbf{M} ight)$
IX.2	Απόκλιση μαγνήτισης	$ abla \cdot \mathbf{H} = - abla \cdot \mathbf{M}$
IX.3	Μαγνητική επιδεκτικότητα και συσχέτισή της με τη μαγνήτιση	$\mathbf{M}=x_{m}\mathbf{H}$
IX.4	Μαγνητική επιδεκτικότητα και μαγνητική διαπερατότητα	$\mu=\mu_{_{0}}\left(1+x_{_{m}} ight), \hspace{1em} \mu_{_{r}}=1+x_{_{m}}$

Μαγνητική Αντιστάση – Μαγνητικά Κυκλωματά

IX.5	Μαγνητεγερτική δύναμη πηνίου Ν ελιγμάτων	$\mathcal{F} = \oint_C \mathbf{H} \cdot d\mathbf{l} = NI$
IX.6	Απώλειες υστέρησης σε σιδηρομαγνητικό υλικό όγκου V με εμβαδόν βρόχου υστέρησης S _h	$W_h = V \oint_C H dB = V S_h$
IX.7	Μαγνητική αντίσταση τμήματος μαγνητικό κυκλώματος διατομής S στα άκρα A, B του οποίου εφαρμόζεται μαγνητική τάση V_m και διαρρέεται από ροή Φ	$R_m = rac{V_m}{\Phi} = rac{\int_A^B \mathbf{H} \cdot d\mathbf{l}}{\iint_S \mathbf{B} \cdot d\mathbf{S}} = rac{\mathcal{F}}{\Phi}$
IX.8	Μαγνητική αντίσταση υλικού μαγνητικής διαπερατότητας μ , μήκους l και διατομής S	$R_m = rac{1}{\mu}rac{l}{S}$
IX.9	Μαγνητική αγωγιμότητα	$P_m = \frac{1}{R_m}$
IX.10	Ο νόμος των "ρευμάτων" του Kirchhoff στα μαγνητικά κυκλώματα (k : αριθμός κλάδων)	$\sum_{i=1}^k \Phi_i = 0$
IX.11	Ο νόμος των τάσεων του Kirchhoff στα μαγνητικά κυκλώματα (n : αριθμός κλάδων, m : αριθμός πηγών)	$\sum_{i=1}^{n} V_{m,i} = \sum_{i=1}^{n} H_{i} l_{i} = \sum_{i=1}^{n} \Phi_{i} R_{m,i} = \sum_{i=1}^{m} F_{i} = \sum_{i=1}^{m} N_{i} I_{i}$

A

ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΩΝ ΣΩΜΑΤΙΔΙΩΝ ΣΤΟ ΗΛΕΚΤΡΙΚΟ ΚΑΙ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ

Κινήση Φορτισμένου Σωματιδιού σε Στατικά Πεδιά

A.1	Γενική εξίσωση κίνησης για μη ρελατιβιστικές περιπτώσεις	$m\frac{d\mathbf{v}}{dt} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$
A.2	Αρχή διατήρησης της ενέργειας	$\frac{1}{2}mv^2 + q\phi = const$
A.3	Ταχύτητα σωματιδίου με φορτίο q και μάζα m που μεταβαίνει από θέση μηδενικού δυναμικού σε θέση δυναμικού V με μηδενική αρχική ταχύτητα	$\upsilon = \sqrt{\frac{2 q V}{m}}$

ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΟΥ ΣΩΜΑΤΙΔΙΟΥ ΣΕ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ

A.4	Εξίσωση κίνησης	$m\frac{d\mathbf{v}}{dt} = q\mathbf{E}$
A.5	Ταχύτητα σωματιδίου (q,m) που εισέρχεται με ταχύτητα \mathbf{v}_0 σε ηλεκτροστατικό πεδίο Ε	$\mathbf{v}(t) = rac{d\mathbf{r}(t)}{dt} = rac{q}{m}\mathbf{E}t + \mathbf{v}_0$
A.6	Συνιστώσες της ταχύτητας (παράλληλη και κάθετη προς τη διεύθυνση του ηλεκτρικού πεδίου Ε)	$egin{aligned} \mathbf{v}_{ } &= rac{q}{m} \mathbf{E}t + \mathbf{v}_{0 } \ \mathbf{v}_{\perp} &= \mathbf{v}_{0\perp} \end{aligned}$
A.7	Επιβατική ακτίνα σωματιδίου (q,m) που εισέρχεται με ταχύτητα υ ₀ από αρχική επιβατική ακτίνα r ₀ σε ηλεκτροστατικό πεδίο Ε	$\mathbf{r}(t) = \frac{q}{2m} \mathbf{E}t^2 + \mathbf{v}_0 t + \mathbf{r}_0$
A.8	Συνιστώσες της επιβατικής ακτίνας (παράλληλη και κάθετη προς τη διεύθυνση του ηλεκτρικού πεδίου Ε)	$egin{aligned} \mathbf{r}_{\!\parallel} &= & rac{q}{2m} \mathbf{E} t^2 + \mathbf{v}_{0\parallel} t + \mathbf{r}_{0\parallel} \ \mathbf{r}_{\!\perp} &= & \mathbf{v}_{0\perp} t + \mathbf{r}_{0\perp} \end{aligned}$

ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΟΥ ΣΩΜΑΤΙΔΙΟΥ ΣΕ ΜΑΓΝΗΤΟΣΤΑΤΙΚΟ ΠΕΔΙΟ

A.9	Εξίσωση κίνησης	$\mathbf{F} = m \frac{d\mathbf{v}}{dt} = q(\mathbf{v} \times \mathbf{B})$
A.10	Συνιστώσες της ταχύτητας (παράλληλη και κάθετη στη διεύθυνση του μαγνητικού πεδίου)	$\mathbf{v}_{ }=const.$ $\mathbf{v}_{\perp}^{2}=const.$

A.11	Ακτίνα κυκλικής περιστροφής σωματιδίου (q,m)	$R = \frac{m\upsilon_{\perp}}{ q B}$
A.12	Περίοδος κυκλικής περιστροφής σωματιδίου (q,m)	$T = \frac{2\pi R}{\upsilon_{\perp}} = \frac{2\pi m}{ q B}$
A.13	Γωνιακή συχνότητα ή κυκλοτρονική συχνότητα της κυκλικής περιστροφής σωματιδίου (q,m)	$\omega_c = rac{2\pi}{T} = rac{ q B}{m}$

ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΟΥ ΣΩΜΑΤΙΔΙΟΥ ΣΕ ΔΙΑΣΤΑΥΡΟΥΜΕΝΑ ΠΕΔΙΑ

A.14	Γενική εξίσωση κίνησης	$mrac{d\mathbf{v}_{ }}{dt} + mrac{d\mathbf{v}_{\perp}}{dt} = q\left(\mathbf{E}_{ } + \mathbf{E}_{\perp} + \mathbf{v}_{\perp} imes \mathbf{B} ight)$
A.15	Επιμέρους εξισώσεις κίνησης	$egin{aligned} &mrac{d\mathbf{v}_{\parallel}}{dt}=q\mathbf{E}_{\parallel}\ &mrac{d\mathbf{v}_{\perp}}{dt}=q\left(\mathbf{E}_{\perp}+\mathbf{v}_{\perp} imes\mathbf{B} ight) \end{aligned}$
A.16	Παράλληλη συνιστώσα στη διεύθυνση του μαγνητικού πεδίου της ταχύτητας και της επιβατικής ακτίνας (Ομαλά επιταχυνόμενη κίνηση)	$egin{aligned} \mathbf{v}_{ } &= rac{q}{m} \mathbf{E}_{ } t + \mathbf{v}_{\mathrm{o} } \ \mathbf{r}_{ } &= rac{q}{2m} \mathbf{E}_{ } t^2 + \mathbf{v}_{\mathrm{o} } t + \mathbf{r}_{\mathrm{o} } \end{aligned}$
A.17	Ανάλυση της κάθετης στη διεύθυνση του μαγνητικού πεδίου συνιστώσας της ταχύτητας	$\mathbf{v}_{\perp} = \mathbf{v}_{d} + \mathbf{v}'$
A.18	Σταθερή ταχύτητα (Ευθύγραμμη ομαλή κίνηση)	$\mathbf{v}_{d} = rac{\mathbf{E}_{\perp} imes \mathbf{B}}{\mathbf{B}^{2}} = const$
A.19	Εξίσωση κίνησης για τη συνιστώσα υ' (Κυκλική κίνηση με άζονα περιστροφής παράλληλο στη διεύθυνση του μαγνητικού πεδίου B)	$m\frac{d\mathbf{v}'}{dt} = q(\mathbf{v}' \times \mathbf{B})$
A.20	Χαρακτηριστικά κυκλικής κίνησης	$R = \frac{mv'}{ q B}$ $T = \frac{2\pi R}{v'} = \frac{2\pi m}{ q B}$ $\omega_c = \frac{2\pi}{T} = \frac{ q B}{m}$

ΠΑΡΑΔΕΙΓΜΑΤΑ

X

ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ

Ορισμοι

X.1	Ταχύτητα διάδοσης του κύματος σ' ένα μη αγώγιμο μέσο με διηλεκτρική σταθερά ε και μαγνητική διαπερατότητα μ	$\upsilon = \frac{1}{\sqrt{\mu\varepsilon}}$
X.2	Χαρακτηριστική σύνθετη αντίσταση μέσου με σταθερές $\varepsilon $ και μ	$\eta = \sqrt{\frac{\mu}{\varepsilon}}$
X.3	Μήκος κύματος	$\lambda = \frac{c}{f}$

Εξισώσεις του Maxwell

X.4	Διαφορική Μορφή	$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \cdot \mathbf{D} = \rho$
X.5	Ολοκληρωτική Μορφή	$\oint_{C} \mathbf{H} \cdot d\mathbf{l} = \frac{\partial}{\partial t} \iint_{S} \mathbf{D} \cdot d\mathbf{S} + \iint_{S} \mathbf{J} \cdot d\mathbf{S}$ $\oint_{C} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \iint_{S} \mathbf{B} \cdot d\mathbf{S}$ $\iint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$ $\iint_{S} \mathbf{D} \cdot d\mathbf{S} = \iiint_{V} \rho dV$

Μιγαλική Μορφή Εξισωσέων του Maxwell

X.6	Στιγμιαίες τιμές της ηλεκτρικής και της μαγνητικής πεδιακής έντασης σε σχέση με τις μιγαδικές τιμές	$egin{aligned} \mathbf{E} &= \mathrm{Re}(\dot{\mathbf{E}}e^{j\omega t}) \ \mathbf{H} &= \mathrm{Re}(\dot{\mathbf{H}}e^{j\omega t}) \end{aligned}$
X.7	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης σε μιγαδική μορφή	$\begin{split} \dot{E}_x &= E_{x0} e^{j\omega\varphi_x} \qquad \dot{H}_x = \dot{H}_{x0} e^{j\omega\varphi_x} \\ \dot{E}_y &= E_{y0} e^{j\omega\varphi_y} \qquad \dot{H}_y = \dot{H}_{y0} e^{j\omega\varphi_y} \\ \dot{E}_z &= E_{z0} e^{j\omega\varphi_z} \qquad \dot{H}_z = \dot{H}_{z0} e^{j\omega\varphi_z} \end{split}$
X.8	Εξισώσεις του Maxwell σε μιγαδική μορφή για ένα γραμμικό και ισότροπο μέσο: $\mathbf{D} = \varepsilon \mathbf{E}$, $\mathbf{B} = \mu \mathbf{H}$, $\mathbf{J} = \sigma \mathbf{E}$	$\nabla \times \dot{\mathbf{H}} = (\sigma + j\omega\varepsilon)\dot{\mathbf{E}} = j\omega\varepsilon_c\dot{\mathbf{E}}$ $\nabla \times \dot{\mathbf{E}} = -j\omega\mu\dot{\mathbf{H}}$ $\nabla \cdot \dot{\mathbf{H}} = 0$ $\nabla \cdot \dot{\mathbf{E}} = \frac{\dot{\rho}}{\varepsilon}$
-----	--	---
X.9	Μιγαδική διηλεκτρική σταθερά	$arepsilon_c = arepsilon - jrac{\sigma}{\omega}$

Η ΕΞΙΣΩΣΗ ΚΥΜΑΤΟΣ $\nabla^2 \mathbf{E} - \mu \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2} - \mu \sigma \frac{\partial \mathbf{E}}{\partial t} = 0$ Γενική μορφή της εξίσωσης κύματος σε X.10 ομογενές, γραμμικό, ισότροπο και $\nabla^{2}\mathbf{H} - \mu\varepsilon \frac{\partial^{2}\mathbf{H}}{\partial t^{2}} - \mu\sigma \frac{\partial\mathbf{H}}{\partial t} = 0$ $\nabla^{2}\mathbf{E} - \mu\varepsilon \frac{\partial^{2}\mathbf{E}}{\partial t^{2}} = 0 \iff \nabla^{2}\mathbf{E} - \frac{1}{v^{2}}\frac{\partial^{2}\mathbf{E}}{\partial t} = 0$ ελεύθερο πηγών $(J_s = \rho = 0)$ μέσο Εξίσωση κύματος σε μη αγώγιμο μέσο X.11 $(\sigma = 0)$ $\nabla^2 \mathbf{H} - \mu \varepsilon \frac{\partial^2 \mathbf{H}}{\partial t^2} = 0 \iff \nabla^2 \mathbf{H} - \frac{1}{v^2} \frac{\partial^2 \mathbf{H}}{\partial t} = 0$ Μονοδιάστατη εξίσωση κύματος για $\frac{\partial^2 \psi}{\partial z^2} - \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2} = 0$ οποιαδήποτε συνιστώσα ψ των **E**, **H** X.12 (ομογενής εξίσωση D' Alembert) $E_{x}(z,t) = E_{x}^{+}(z-\upsilon t) + E_{x}^{-}(z+\upsilon t)$ $E_{u}(z,t) = E_{u}^{+}(z-\upsilon t) + E_{u}^{-}(z+\upsilon t)$ $H_{a}(z,t) = H_{a}^{+}(z-vt) + H_{a}^{-}(z+vt)$ Γενική λύση της μονοδιάστατης X.13 εξίσωσης κύματος $H_{u}(z,t) = H_{u}^{+}(z-\upsilon t) + H_{u}^{-}(z+\upsilon t)$ $H_y^+ = rac{E_x^+}{\eta}, \ H_y^- = -rac{E_x^-}{\eta}, \ H_x^+ = -rac{E_y^+}{\eta}, \ H_x^- = rac{E_y^-}{\eta}$ Συντελεστής (σταθερά) διάδοσης $\gamma^2 = j\omega(\mu\sigma + j\omega\varepsilon) = -\omega^2\mu\varepsilon + j\omega\mu\sigma$ X.14 κύματος Διανυσματική εξίσωση Helmholtz για τη $\nabla^2 \dot{\mathbf{H}} - \gamma^2 \dot{\mathbf{H}} = 0$ διάδοση μονοχρωματικού κύματος σε X.15 ομογενές, γραμμικό και ισότροπο μέσο $\nabla^2 \dot{\mathbf{E}} - \gamma^2 \dot{\mathbf{E}} = 0$ χωρίς διανεμημένα χωρικά φορτία $\nabla^2 \dot{\mathbf{H}} + \omega^2 \mu \varepsilon \dot{\mathbf{H}} = 0$ Διάδοση σε μη αγώγιμο μέσο ($\sigma = 0$) X.16 $\nabla^2 \dot{\mathbf{E}} + \omega^2 \mu \varepsilon \dot{\mathbf{E}} = 0$ $\nabla^2 \mathbf{G} - \mu \sigma \frac{\partial \mathbf{G}}{\partial t} = 0$ Εξίσωση διάχυσης σε καλό αγώγιμο X.17 μέσο ($\omega \varepsilon \ll \sigma$) $\mathbf{G} = \mathbf{E}, \mathbf{H}, \mathbf{J}, \mathbf{B}$ $\nabla^2 \dot{\mathbf{G}} - j\omega\mu\sigma\dot{\mathbf{G}} = 0$ Εξίσωση διάχυσης σε καλό αγώγιμο X.18 μέσο ($\omega \varepsilon \ll \sigma$) $\dot{\mathbf{G}}=\dot{\mathbf{E}},\dot{\mathbf{H}},\dot{\mathbf{J}},\dot{\mathbf{B}}$ Λόγος ρεύματος μετατόπισης προς ρεύμα $Q = \frac{\left| \dot{\mathbf{J}}_{d} \right|}{\left| \dot{\mathbf{J}}_{c} \right|} = \frac{\left| j\omega\varepsilon\dot{\mathbf{E}} \right|}{\left| \sigma\dot{\mathbf{E}} \right|} =$ $\omega \varepsilon$ X.19 αγωγιμότητας (μέτρο ορισμού ενός υλικού ως καλού αγωγού ή όχι)

ΒΑΘΜΩΤΑ ΚΑΙ ΔΙΑΝΥΣΜΑΤΙΚΑ ΔΥΝΑΜΙΚΑ

X.20	Σχέσεις ορισμού του διανυσματικού δυναμικού Α και του βαθμωτού δυναμικού φ	$\mathbf{B} = \nabla \times \mathbf{A}$ $\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}$
X.21	Συνθήκη Lorentz	$\nabla \cdot \mathbf{A} + \mu \varepsilon \frac{\partial \phi}{\partial t} = 0$
X.22	Μη ομογενής εξίσωση Helmholtz, όταν ικανοποιείται η συνθήκη Lorentz	$\nabla^{2}\mathbf{A} - \mu\varepsilon \frac{\partial^{2}\mathbf{A}}{\partial t^{2}} = -\mu\mathbf{J} \Leftrightarrow {}^{2}\mathbf{A} = -\mu\mathbf{J}$ $\nabla^{2}\phi - \mu\varepsilon \frac{\partial^{2}\phi}{\partial t^{2}} = -\frac{\rho}{\varepsilon} \Leftrightarrow {}^{2}\phi = -\frac{\rho}{\varepsilon}$
X.23	Τελεστής του D' Alembert	$^{2}\equiv abla^{2}-\muarepsilonrac{\partial^{2}}{\partial t^{2}}$
X.24	Μετασχηματισμός gauge του βαθμωτού και του διανυσματικού δυναμικού, όπου ψ αυθαίρετη βαθμωτή συνάρτηση	$\mathbf{A}' = \mathbf{A} + abla \psi$ $\phi' = \phi - rac{\partial \psi}{\partial t}$
X.25	Τα μετασχηματισμένα \mathbf{A}' και ϕ' καταλήγουν στα ίδια πεδιακά μεγέθη \mathbf{E} , \mathbf{H} με τα αρχικά \mathbf{A} και ϕ	$\mathbf{E} = -\nabla \phi' - \frac{\partial \mathbf{A}'}{\partial t}$ $\mathbf{B} = \nabla \times \mathbf{A}'$
X.26	Η ψ ικανοποιεί την εξίσωση κύματος	$\nabla^2 \psi - \mu \varepsilon \frac{\partial^2 \psi}{\partial t^2} = {}^2 \psi = 0$
X.27	Τα μετασχηματισμένα δυναμικά Α ' και φ' ικανοποιούν τη μη ομογενή εξίσωση Helmholtz	$^{2}\mathbf{A}^{\prime}=-\mu\mathbf{J}$ $^{2}\phi^{\prime}=-rac{ ho}{arepsilon}$
X.28	Καθυστερημένα δυναμικά ή δυναμικά καθυστέρησης συναρτήσει των πηγών του πεδίου και της απόστασης από αυτές R	$\mathbf{A} = \frac{\mu_0}{4\pi} \iiint_{V'} \frac{\mathbf{J}(x', y', z', t')}{R} dV'$ $\phi = \frac{1}{4\pi\varepsilon_0} \iiint_{V'} \frac{\rho(x', y', z', t')}{R} dV'$
X.29	Χρόνος καθυστέρησης	$t' = t - \frac{R}{c}$
X.30	Ορισμός δυναμικού ή διανύσματος Hertz ή δυναμικού πόλωσης	$\mathbf{A} = \frac{1}{v^2} \frac{\partial \mathbf{\Pi}}{\partial t}$ $\phi = -\nabla \cdot \mathbf{\Pi}$
X.31	Κυματική εξίσωση για το δυναμικό Hertz, σε μέσο όπου δεν υπάρχουν διανεμημένες πηγές	$\nabla^2 \Pi - \frac{1}{v^2} \frac{\partial^2 \Pi}{\partial t^2} = 0$
X.32	Τα διανύσματα Ε και Β ως συναρτήσεις του δυναμικού Hertz	$\mathbf{E} = \nabla (\nabla \cdot \mathbf{\Pi}) - \frac{1}{v^2} \frac{\overline{\partial^2 \mathbf{\Pi}}}{\partial t^2}$ $\mathbf{B} = \frac{1}{v^2} \nabla \times \frac{\partial \mathbf{\Pi}}{\partial t}$
X.33	Κυματική εξίσωση για το δυναμικό Hertz παρουσία ρευμάτων και φορτίων λόγω ηλεκτρικής πόλωσης	$\nabla^2 \mathbf{\Pi} - \frac{1}{\upsilon^2} \frac{\partial^2 \mathbf{\Pi}}{\partial t^2} = -\frac{\mathbf{P}}{\varepsilon}$

Ημιτονοείδης Χρονική Μεταβολή Δυναμικών – Μιγαδικός Συμβολισμός

X.34	Βαθμωτό και διανυσματικό δυναμικό	$\dot{\mathbf{B}} = \nabla \times \dot{\mathbf{A}}$ $\dot{\mathbf{E}} = -\nabla \dot{\phi} - j\omega \dot{\mathbf{A}}$
X.35	Συνθήκη Lorentz	$\nabla \cdot \dot{\mathbf{A}} + j\omega\mu\varepsilon\dot{\phi} = 0$
X.36	Μη ομογενής εξίσωση Helmholtz	$ abla^2 \dot{\mathbf{A}} + \omega^2 \mu \varepsilon \dot{\mathbf{A}} = -\mu \dot{\mathbf{J}}$ $ abla^2 \dot{\phi} + \omega^2 \mu \varepsilon \dot{\phi} = -rac{\dot{ ho}}{arepsilon}$
X.37	Ηλεκτρική πεδιακή ένταση	$\dot{\mathbf{E}} = -\frac{j}{\omega\mu\varepsilon}\nabla(\nabla\cdot\dot{\mathbf{A}}) - j\omega\dot{\mathbf{A}}$
X.38	Καθυστερημένα δυναμικά	$\dot{\mathbf{A}} = rac{\mu_0}{4\pi} \iiint_{V'} rac{\dot{\mathbf{j}}(x',y',z')}{R} e^{-jkR} dV' \ \dot{\phi} = rac{1}{4\piarepsilon_0} \iiint_{V'} rac{\dot{ ho}(x',y',z')}{R} e^{-jkR} dV'$
X.39	Κυματικός αριθμός ή κυματάριθμος	$k = \frac{\omega}{c} = \frac{2\pi f}{c} = \frac{2\pi}{\lambda},$
X.40	Καθυστερημένα δυναμικά κοντά σε πηγές των οποίων οι διαστάσεις είναι πολύ μικρότερες από το μήκος κύματος $(R\ll\lambda)$	$\begin{split} \dot{\mathbf{A}} &= \frac{\mu_0}{4\pi} \iiint_{V'} \frac{\dot{\mathbf{J}}(x',y',z')}{R} dV' \\ \dot{\phi} &= \frac{1}{4\pi\varepsilon_0} \iiint_{V'} \frac{\dot{\rho}(x',y',z')}{R} dV' \end{split}$

ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΡΟΥΝΤΙΝG

X.41	Διαφορική διατύπωση του θεωρήματος του Poynting	$-\nabla \cdot (\mathbf{E} \times \mathbf{H}) = \mathbf{J} \cdot \mathbf{E} + \left(\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} + \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} \right)$
X.42	Ολοκληρωτική διατύπωση του θεωρήματος του Poynting	$-\oint\!$
X.43	Το θεώρημα του Poynting για μέσο ομογενές, γραμμικό και ισότροπο.	$- \oint \!$
X.44	Το θεώρημα του Poynting σε χρονικά αμετάβλητο πεδίο	$-\oint\!$
X.45	Το πραγματικό διάνυσμα Poynting P (ή S) εκφράζει την ανά μονάδα χρόνου ενέργεια που διέρχεται από τη μονάδα επιφανείας και έχει τη διεύθυνση διάδοσης της ενέργειας	$\mathbf{P} = \mathbf{E} imes \mathbf{H}$

X.46	Το μιγαδικό διάνυσμα Poynting \mathbf{S}_{c}	$\mathbf{S}_{c}=\frac{1}{2}(\dot{\mathbf{E}}\times\overset{*}{\mathbf{H}})$
X.47	Το πραγματικό διάνυσμα Poynting P συναρτήσει του μιγαδικού \mathbf{S}_{c}	$\begin{split} \mathbf{P} &= \frac{1}{2} \operatorname{Re}(\dot{\mathbf{E}} \times \overset{*}{\mathbf{H}}) + \frac{1}{2} \operatorname{Re}(\dot{\mathbf{E}} \times \dot{\mathbf{H}} e^{j2\omega t}) \\ &\left\langle \mathbf{P} \right\rangle = \operatorname{Re}\left\{ \mathbf{S}_{c} \right\} \end{split}$
X.48	Διαφορική διατύπωση του θεωρήματος του Poynting υπό μιγαδική μορφή	$-\nabla\cdot\mathbf{S}_{c} = -\frac{1}{2}\nabla\cdot(\dot{\mathbf{E}}\times\overset{*}{\mathbf{H}}) = \frac{1}{2}\dot{\mathbf{E}}\cdot\overset{*}{\mathbf{J}} + j\omega\left(\frac{1}{2}\dot{\mathbf{B}}\cdot\overset{*}{\mathbf{H}} - \frac{1}{2}\dot{\mathbf{E}}\cdot\overset{*}{\mathbf{D}}\right)$
X.49	Ολοκληρωτική διατύπωση του θεωρήματος του Poynting υπό μιγαδική μορφή	$- \oint \!$
X.50	Πυκνότητα ενέργειας ηλεκτρικού πεδίου	$ig\langle w_eig angle = rac{1}{4} { m Re} \Big\{ \dot{f E} \cdot f D \Big\}$
X.51	Πυκνότητα ενέργειας μαγνητικού πεδίου	$ig\langle w_{_{m}}ig angle = rac{1}{4}\operatorname{Re}ig\{\dot{\mathbf{B}}\cdot\dot{\mathbf{H}}ig\}$
X.52	Πυκνότητα απωλειών Joule	$\left\langle w_{j} ight angle =rac{1}{4}\operatorname{Re}\left\{ \dot{\mathbf{E}}\cdot\dot{\mathbf{j}} ight\}$

Σημείωση: Στις σχέσεις X.42 και X.43 το πρώτο ολοκλήρωμα του δεξιού μέρους εκφράζει την ανά μονάδα χρόνου ενέργεια (ισχύ) του ηλεκτρομαγνητικού πεδίου που μετατρέπεται σε θερμότητα σύμφωνα με το νόμο του Joule. Το δεύτερο ολοκλήρωμα του δεξιού μέρους εκφράζει την ταχύτητα μεταβολής της ενέργειας του ηλεκτρικού και του μαγνητικού πεδίου στον όγκο V.

XI

ΕΠΙΠΕΔΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ

Διάλοση Επιπελού κύματος σε μη Αγωγιμα Μέσα

XI.1	Φασική σταθερά διάδοσης κύματος β	$\gamma^2 = -\omega^2 \mu \varepsilon = (\pm j\beta)^2 \Rightarrow \beta = \omega \sqrt{\mu \varepsilon}$
XI.2	Μονοδιάστατη εξίσωση Helmholtz για τις συνιστώσες των διανυσμάτων $\dot{\mathbf{H}}$ και $\dot{\mathbf{E}}$ $(\dot{H}_z = \dot{E}_z = 0)$ επιπέδου κύματος	$egin{aligned} &rac{d^2\dot{\psi}}{dz^2}+eta^2\dot{\psi}=0\ &\psi=H_x,H_y,E_x,E_y \end{aligned}$
XI.3	Γενική λύση μονοδιάστατης εξίσωσης Helmholtz	$\begin{split} \dot{H}_{x} &= \dot{H}_{x}^{+} e^{-j\beta z} + \dot{H}_{x}^{-} e^{j\beta z} & \dot{E}_{x}^{+} = \eta \dot{H}_{y}^{+} \\ \dot{H}_{y} &= \dot{H}_{y}^{+} e^{-j\beta z} + \dot{H}_{y}^{-} e^{j\beta z} & \dot{E}_{y}^{+} = -\eta \dot{H}_{x}^{+} \\ \dot{E}_{x} &= \dot{E}_{x}^{+} e^{-j\beta z} + \dot{E}_{x}^{-} e^{j\beta z} & \dot{E}_{x}^{-} = -\eta \dot{H}_{y}^{-} \\ \dot{E}_{y} &= \dot{E}_{y}^{+} e^{-j\beta z} + \dot{E}_{y}^{-} e^{j\beta z} & \dot{E}_{y}^{-} = \eta \dot{H}_{x}^{-} \end{split}$
XI.4	Μιγαδική ηλεκτρική και μαγνητική πεδιακή ένταση επιπέδου κύματος που διαδίδεται κατά $+z$ με $\dot{E}_x^- = \dot{E}_y^+ = \dot{E}_y^- = 0$	$\dot{\mathbf{E}} = \dot{E}_x \mathbf{x}_0 = \dot{E}_x^+ e^{-j\beta z} \mathbf{x}_0$ $\dot{\mathbf{H}} = \dot{H}_y \mathbf{y}_0 = \dot{H}_y^+ e^{-j\beta z} \mathbf{y}_0 = \frac{\dot{E}_x^+}{\eta} e^{-j\beta z} \mathbf{y}_0 \text{kon } \dot{E}_x^+ = E_0 e^{j\varphi}$
XI.5	Στιγμιαίες τιμές ηλεκτρικής και μαγνητικής πεδιακής έντασης επιπέδου κύματος που διαδίδεται κατά +z	$\mathbf{E}(z,t) = \operatorname{Re}(\dot{\mathbf{E}}e^{j\omega t}) = E_0 \cos(\omega t - \beta z + \varphi)\mathbf{x}_0$ $\mathbf{H}(z,t) = \operatorname{Re}(\dot{\mathbf{H}}e^{j\omega t}) = \frac{E_0}{\eta}\cos(\omega t - \beta z + \varphi)\mathbf{y}_0$
XI.6	Φασική ταχύτητα	$\upsilon_p = \frac{dz}{dt} = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu\varepsilon}}$
XI.7	Μήκος κύματος	$\lambda = \frac{2\pi}{\beta} = \frac{2\pi}{\omega} \upsilon_p = \frac{\upsilon_p}{f} = T \upsilon_p$
XI.8	Πραγματικό διάνυσμα Poynting	$\mathbf{P} = \frac{E_0^2}{2\eta} \mathbf{z}_0 + \frac{E_0^2}{2\eta} \cos 2(\omega t - \beta z + \varphi) \mathbf{z}_0$
XI.9	Μέση χρονική τιμή της μεταφερόμενης ισχύος	$\langle {f P} angle = {E_0^2 \over 2\eta} {f z}_0$

Πολωση Επιπελού Κύματος

XI.10	Στιγμιαίες τιμές των συνιστωσών της ηλεκτρικής έντασης επίπεδου κύματος που διαδίδεται κατά $+z$	$egin{aligned} E_{x}(t) &= E_{x0}\cos\omega t\ E_{y}(t) &= E_{y0}\cos(\omega t + arphi) \end{aligned}$
XI.11	Γραμμικά πολωμένο κύμα (θ : γωνία του διανύσματος Ė με τον άζονα x) $\varphi = 0 \Rightarrow$ ^(α) $\theta(t) = \arctan\left[\frac{E_y(t)}{E_x(t)}\right] = \arctan\left(\frac{E_{y0}}{E_{x0}}\right) = const.$ ^(β) $\varphi = \pm \pi \Rightarrow$ $\theta(t) = \arctan\left[\frac{E_y(t)}{E_x(t)}\right] = \arctan\left(-\frac{E_{y0}}{E_{x0}}\right) = const.$	$E_{y} = E_{y0} \cos \omega t \qquad \varphi = 0$ $E(t) \qquad E_{x} = E_{x0} \cos \omega t \qquad x$ $E_{x} = E_{x0} \cos \omega t \qquad x$ $E_{y} = -E_{y0} \cos \omega t \qquad x$
XI.12	$\begin{aligned} & \operatorname{Kukliká} \pi \operatorname{olompávo kúma} \\ & E_{x0} = E_{y0} = E_0 \\ & \varphi = \pm \frac{\pi}{2} \end{aligned} \right\} \Rightarrow \begin{cases} E_x = E_0 \cos \omega t \\ & E_y = E_0 \cos \left(\omega t \pm \frac{\pi}{2} \right) \\ & \Rightarrow \begin{cases} \theta(t) = \arctan \left[\frac{E_y(t)}{E_x(t)} \right] = \mp \omega t \\ & E^2 = E_x^2 + E_y^2 = E_0^2 \end{aligned}$	y y y $\varphi = -\frac{\pi}{2}$ y $\varphi = -\frac{\pi}{2}$ x
XI.13	Eλλειπτικά πολωμένο κύμα $\begin{cases} E_x(t) = E_{x0} \cos \omega t \\ E_y(t) = E_{y0} \cos(\omega t + \varphi) \end{cases}$ $\Rightarrow \qquad \begin{cases} \frac{E_x^2}{E_{x0}^2} - \frac{2E_x E_y}{E_{x0} E_{y0}} \cos \phi + \frac{E_y^2}{E_{y0}^2} = \sin^2 \phi \\ \tan \theta(t) = \mp \frac{E_{y0}}{E_{x0}} \tan(\omega t) \end{cases}$	$\mathbf{y} \qquad E_x(t) = E_{x0} \cos \omega t$ $E_y(t) = E_{y0} \cos(\omega t + \varphi)$ $\mathbf{E}_{y0} \qquad \mathbf{E}_{y0} \qquad \mathbf{E}_{x0} \qquad \mathbf{E}$
XI.14	Ισχύς ανά μονάδα επιφανείας ελλειπτικά πολωμένου κύματος	$\left\langle \overline{\mathbf{P}} \right\rangle = \operatorname{Re}(\overline{\mathbf{S}}_{c}) = \frac{1}{2\eta} (E_{x0}^{2} + E_{y0}^{2}) \mathbf{z}_{0}$

Διάλοση Επιπελού Κύματος σε μη Τελεία Μονωτικά Μέσα

XI.15	Σταθερά διάδοσης γ (γενική σχέση)	$\gamma^2 = j\omega\mu(\sigma + j\omega\varepsilon) = -\omega^2\mu\varepsilon + j\omega\mu\sigma \Rightarrow \gamma = \pm(\alpha + j\beta)$
XI.16	Σταθερά απόσβεσης κύματος	$\alpha = \omega \sqrt{\frac{\mu\varepsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} - 1 \right]^{1/2} \Rightarrow \alpha = \omega \sqrt{\frac{\mu\varepsilon}{2}} \left[\sqrt{1 + \frac{1}{Q^2}} - 1 \right]^{1/2} $ $(Q = \omega\varepsilon / \sigma)$
XI.17	Φασική σταθερά διάδοσης κύματος	$\beta = \omega \sqrt{\frac{\mu\varepsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} + 1 \right]^{1/2} \Rightarrow \beta = \omega \sqrt{\frac{\mu\varepsilon}{2}} \left[\sqrt{1 + \frac{1}{Q^2}} + 1 \right]^{1/2}$
XI.18	Χαρακτηριστική σύνθετη αντίσταση μέσου	$\begin{split} \eta &= \frac{j\omega\mu}{\gamma} = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}} \Rightarrow \eta = \eta e^{j\theta} \left(0 < \theta < \frac{\pi}{4}\right) \\ \eta &= \frac{(\mu/\varepsilon)^{1/2}}{\left[1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2\right]^{1/4}} = \frac{(\mu/\varepsilon)^{1/2}}{\left[1 + \frac{1}{Q^2}\right]^{1/4}} \\ \theta &= \frac{1}{2}\arctan\left(\frac{\sigma}{\omega\varepsilon}\right) = \frac{1}{2}\arctan\left(\frac{1}{Q}\right) \end{split}$
XI.19	Ηλεκτρική και μαγνητική πεδιακή ένταση επιπέδου κύματος (μιγαδική παράσταση)	$egin{array}{lll} \dot{\mathbf{E}} &= E_{x0}e^{-az}e^{j(arphi-eta z)}\mathbf{x}_{0} \ \dot{\mathbf{H}} &= rac{E_{x0}}{ \eta }e^{-az}e^{j(arphi- heta-eta z)}\mathbf{y}_{0} \end{array}$
XI.20	Στιγμιαίες τιμές ηλεκτρικής και μαγνητικής πεδιακής έντασης επιπέδου κύματος	$\begin{split} \mathbf{E}(z,t) &= \operatorname{Re}(\dot{\mathbf{E}}e^{j\omega t}) = E_{x0}e^{-az}\cos(\omega t - \beta z + \varphi)\mathbf{x}_{0} \\ \mathbf{H}(z,t) &= \operatorname{Re}(\dot{\mathbf{H}}e^{j\omega t}) = \frac{E_{x0}}{ \eta }e^{-az}\cos(\omega t - \beta z + \varphi - \theta)\mathbf{y}_{0} \end{split}$
XI.21	Φασική ταχύτητα	$v_p = rac{\omega}{eta} = rac{\sqrt{2}}{\sqrt{\muarepsilon}} rac{1}{\left[\sqrt{1 + \left(rac{\sigma}{\omegaarepsilon} ight)^2} + 1 ight]^{1/2}} = rac{\sqrt{2}}{\sqrt{\muarepsilon} \left(\sqrt{1 + rac{1}{Q^2}} + 1 ight)^{1/2}}$
XI.22	Μήκος κύματος	$\lambda = \frac{2\pi}{\beta} = \frac{2\pi}{\omega} v_p = \frac{2\pi}{\omega} \frac{\sqrt{2}}{\sqrt{\mu\varepsilon} \left[\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} + 1 \right]^{1/2}} = \frac{2\pi}{\omega} \frac{\sqrt{2}}{\sqrt{\mu\varepsilon} \left(\sqrt{1 + \frac{1}{Q^2}} + 1 \right)^{1/2}}$

	Διάδοση σε καλό διηλεκτοικό (Ω >> 1)		
XI.23	Σταθερά απόσβεσης του κύματος	$a \cong \frac{\omega\sqrt{\mu\varepsilon}}{2Q} = \frac{\sigma}{2}\sqrt{\frac{\mu}{\varepsilon}}$	
XI.24	Φασική σταθερά διάδοσης του κύματος	$\beta \cong \omega \sqrt{\mu \varepsilon} \left(1 + \frac{1}{8Q^2} \right) \cong \omega \sqrt{\mu \varepsilon}$	
XI.25	Χαρακτηριστική σύνθετη αντίσταση του μέσου	$\eta \cong \frac{\sqrt{\frac{\mu}{\varepsilon}}}{\left(1 + \frac{1}{4Q^2}\right)} e^{\frac{j}{2}\arctan\left(\frac{1}{Q}\right)} \cong \sqrt{\frac{\mu}{\varepsilon}}$	
XI.26	Φασική ταχύτητα	$arphi_{_{p}}\congrac{1}{\sqrt{\muarepsilon}}iggl(1-rac{1}{8Q^{2}}iggr)\congrac{1}{\sqrt{\muarepsilon}}$	

XI.27	Μήκος κύματος	$\lambda \cong \frac{2\pi}{\omega \sqrt{\mu \varepsilon}} \left(1 - \frac{1}{8Q^2} \right) \cong \frac{2\pi}{\omega \sqrt{\mu \varepsilon}}$
-------	---------------	---

	Διάδοση σε καλό αγωγό (<i>Q</i> << 1)		
XI.28	Σταθερά απόσβεσης του κύματος	$\alpha \cong \sqrt{\frac{\mu \sigma \omega}{2}} \left(1 - \frac{1}{2} Q \right) \cong \sqrt{\frac{\mu \sigma \omega}{2}}$	
XI.29	Φασική σταθερά διάδοσης του κύματος	$\beta \cong \sqrt{\frac{\mu \sigma \omega}{2}} \left(1 + \frac{1}{2} Q \right) \cong \sqrt{\frac{\mu \sigma \omega}{2}}$	
XI.30	Χαρακτηριστική σύνθετη αντίσταση μέσου	$\eta \cong \sqrt{\frac{\mu Q}{\varepsilon}} e^{\frac{j}{2} \arctan\left(\frac{1}{Q}\right)} \cong \sqrt{\frac{\mu \omega}{\sigma}} e^{j\frac{\pi}{4}} = \sqrt{\frac{j\mu \omega}{\sigma}}$	
XI.31	Φασική ταχύτητα	$\upsilon_{\scriptscriptstyle p} = \frac{\omega}{\beta} \cong \sqrt{\frac{2\omega}{\mu\sigma}} \Big(1 - \frac{1}{2} Q \Big) \cong \sqrt{\frac{2\omega}{\mu\sigma}}$	
XI.32	Μήκος κύματος	$\lambda = \frac{2\pi}{\beta} \cong 2\pi \sqrt{\frac{2}{\mu\sigma\omega}} \left(1 - \frac{1}{2}Q\right) \cong 2\pi \sqrt{\frac{2}{\mu\sigma\omega}}$	
XI.33	Βάθος διείσδυσης	$\delta \cong \frac{1}{\alpha} \cong \frac{1}{\beta} \cong \sqrt{\frac{2}{\mu\sigma\omega}} \cong \frac{\lambda}{2\pi}$	

ΤΟ ΠΕΔΙΟ ΜΕΣΑ ΣΕ ΑΓΩΓΙΜΑ ΜΕΣΑ – ΕΞΙΣΩΣΗ ΔΙΑΧΥΣΗΣ

XI.34	Εξίσωση διάχυσης	$\nabla^{2}\mathbf{G} - \mu\sigma \frac{\partial \mathbf{G}}{\partial t} = 0$ $\mathbf{G} = \mathbf{E}, \mathbf{H}, \mathbf{J}, \mathbf{B}$
XI.35	Εξίσωση διάχυσης (μιγαδική μορφή)	$\nabla^2 \dot{\mathbf{G}} - j\omega\mu\sigma\dot{\mathbf{G}} = \nabla^2 \dot{\mathbf{G}} - \gamma^2 \dot{\mathbf{G}} = 0$ $\mathbf{G} = \mathbf{E}, \mathbf{H}, \mathbf{J}, \mathbf{B}$
XI.36	Σταθερά διάδοσης	$\gamma^2 = (\alpha + j\beta)^2 = j\omega\mu\sigma = \left[(\omega\mu\sigma)^{1/2}j^{1/2}\right]^2 = \left[\sqrt{\frac{\omega\mu\sigma}{2}}(1+j)\right]^2$
XI.37	Σταθερά απόσβεσης και φασική σταθερά διάδοσης	$\alpha = \beta = \sqrt{\frac{\mu\omega\sigma}{2}} = \frac{1}{\delta}$
XI.38	Εξίσωση της ροής σε ''πορώδες'' μέσο	$\mathbf{E} = \frac{\mathbf{J}}{\sigma} = \frac{\rho}{\sigma} \mathbf{v}$

Το πεδίο σε ημιάπειρο αγώγιμο μέσο ($\dot{E}_x^-=0$)		
XI.39	Hlektrikh πεδιακή ένταση (ο δείκτης s αναφέρεται στη διαχωριστική επιφάνεια) $\dot{\mathbf{E}} = \dot{E}_x^+ e^{-(1+j)\frac{z}{\delta}} \mathbf{x}_0 \Rightarrow \dot{\mathbf{E}} = \dot{E}_s e^{-(1+j)\frac{z}{\delta}} \mathbf{x}_0$ $\dot{E}_s = \dot{E}_x^+$	Διηλεκτρικό μέσο Αγώγιμο μέσο (Q<<1)
XI.40	$\begin{split} Magingtikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk$	$\mathbf{E} \begin{vmatrix} \mathbf{a} & \mathbf{c} \\ \mathbf{e} \\ $
XI.41	Πυκνότητα ρεύματος	$\begin{split} \dot{\mathbf{J}} &= \dot{J}_s e^{-(1+j)\frac{z}{\delta}} \mathbf{x}_0 \Rightarrow \dot{\mathbf{J}} = J_s e^{-(1+j)\frac{z}{\delta}} e^{j\varphi} \mathbf{x}_0 \\ \dot{J}_s &= \sigma \dot{E}_x^+, \ \dot{J}_s = J_s e^{j\varphi} \end{split}$
XI.42	Μαγνητική επαγωγή	$\begin{split} \dot{\mathbf{B}} &= \dot{B}_{s} e^{-(1+j)\frac{z}{\delta}} \mathbf{y}_{0} \Rightarrow \dot{\mathbf{B}} = \sqrt{\frac{\mu}{\sigma\omega}} \dot{J}_{s} e^{-(1+j)\frac{z}{\delta}} e^{j\left(\varphi - \frac{\pi}{4}\right)} \mathbf{y}_{0} \\ \dot{B}_{s} &= \mu \dot{H}_{s} = \frac{\mu}{\eta} \dot{E}_{s} = \sqrt{\frac{\mu\sigma}{\omega}} \dot{E}_{s} e^{-j\frac{\pi}{4}} = \sqrt{\frac{\mu}{\sigma\omega}} \dot{J}_{s} e^{-j\frac{\pi}{4}} \end{split}$
XI.43	Στιγμιαίες τιμές των διανυσμάτων J και B	$\mathbf{J} = \operatorname{Re}(\dot{\mathbf{J}}e^{j\omega t}) = J_s e^{-\frac{z}{\delta}} \cos\left(\omega t - \frac{z}{\delta} + \varphi\right) \mathbf{x}_0$ $\mathbf{B} = \operatorname{Re}(\dot{\mathbf{B}}e^{j\omega t}) = \sqrt{\frac{\mu}{\sigma\omega}} J_s e^{-\frac{z}{\delta}} \cos\left(\omega t - \frac{z}{\delta} + \varphi - \frac{\pi}{4}\right) \mathbf{y}_0$
XI.44	Συνολικό ρεύμα που ρέει σε επίπεδο "στρώμα" του ημιάπειρου αγώγιμου μέσου μοναδιαίου πάχους	$\dot{I}=\int_{0}^{\infty}\dot{J}dz=rac{J_{s}\delta}{\sqrt{2}}e^{j\left(arphi-rac{\pi}{4} ight)}$
XI.45	Στιγμιαία τιμή του ρεύματος	$I(t) = \operatorname{Re}(\dot{I}e^{j\omega t}) = \frac{J_s\delta}{\sqrt{2}}\cos\left(\omega t - \frac{\pi}{4} + \varphi\right)$
XI.46	Μέση χρονική ισχύς ωμικών απωλειών ανά μονάδα μήκους κατά τη διεύθυνση του ρεύματος στο αγώγιμο στρώμα	$\begin{split} \langle P \rangle &= \frac{1}{2\sigma} \int_0^\infty \dot{J} \overset{*}{J} dz = \int_0^\infty \frac{J_s^2}{2\sigma} e^{-2\frac{z}{\delta}} dz = \frac{J_s^2 \delta}{4\sigma} \Longrightarrow \\ \langle P \rangle &= \frac{I_{rms}^2}{\sigma \delta} = R I_{rms}^2 \end{split}$
XI.47	Ενδεικνύμενη τιμή του ρεύματος	$I_{rms} = rac{I_{max}}{\sqrt{2}} = rac{J_s \delta}{2}$
XI.48	Ισοδύναμη ωμική αντίσταση	$R = \frac{\langle P \rangle}{I_{rms}^2} = \frac{1}{\sigma \delta}$

Ανάπτυξη ρευμάτων σε αγώγιμη πλάκα (η πλάκα εκτείνεται στο άπειρο κατά τους άζονες x και y, έχει πάχος 2b κατά τον άζονα z, ενώ η πυκνότητα ρεύματος θεωρείται παράλληλη στον άζονα x και έχει την τιμή Ĵ, στο μέσο επίπεδο z=0 της πλάκας)		
XI.49	Εξίσωση διάχυσης για την πυκνότητα ρεύματος $\frac{d^2 \dot{\mathbf{J}}}{dz^2} - j\omega\mu\sigma\dot{\mathbf{J}} = 0$	$ \begin{array}{c} $
XI.50	Γενική λύση της εξίσωσης διάχυσης $\dot{\mathbf{J}} = \left[\dot{J}_x^+ e^{-(1+j)\frac{z}{\delta}} + \dot{J}_x^- e^{(1+j)\frac{z}{\delta}} \right] \mathbf{x}_0$	$\sigma = 0$
XI.51	Συνθήκη συμμετρίας και αρχική συνθήκη	$ \begin{split} \dot{J}(z) &= \dot{J}(-z) \\ \dot{J}(0) &= \dot{J}_x^+ + \dot{J}_x^- = \dot{J}_0 \\ \end{split} \Rightarrow \dot{J}_x^+ &= \dot{J}_x^- = \frac{\dot{J}_0}{2} \end{split} $
XI.52	Πυκνότητα ρεύματος εντός της πλάκας	$\dot{\mathbf{J}} = \frac{\dot{\boldsymbol{J}}_0}{2} \Big[e^{-(1+j)\frac{z}{\delta}} + e^{(1+j)\frac{z}{\delta}} \Big] \mathbf{x}_0 = \dot{\boldsymbol{J}}_0 \cosh\left[(1+j)\frac{z}{\delta} \right] \mathbf{x}_0$
XI.53	Πυκνότητα ρεύματος στις επιφάνειες της πλάκας $(z=\pm b)$	$\dot{\mathbf{J}}_{s}=\dot{J}_{0}\coshigg[(1+j)rac{b}{\delta}igg]\mathbf{x}_{0}$
XI.54	Συνολικό ρεύμα ανά μονάδα μήκους του άξονα y	$\dot{I} = \frac{2\dot{J}_0\delta}{(1+j)}\sinh\left[(1+j)\frac{b}{\delta}\right] = \frac{2\dot{J}_s\delta}{(1+j)}\tanh\left[(1+j)\frac{b}{\delta}\right]$
XI.55	Συνολικό ρεύμα ανά μονάδα μήκους ότα ν $b\gg\delta$	$\dot{I} \cong rac{2 \dot{J}_s \delta}{(1+j)}$
XI.56	Πυκνότητα ρεύματος ως συνάρτηση του συνολικού ρεύματος που διαρρέει την πλάκα	$\dot{\mathbf{J}} = \dot{I} \frac{(1+j)}{2\delta} \frac{\cosh\left[(1+j)\frac{z}{\delta}\right]}{\sinh\left[(1+j)\frac{b}{\delta}\right]} \mathbf{x}_{0}$
XI.57	Ηλεκτρική πεδιακή ένταση ως συνάρτηση του συνολικού ρεύματος που διαρρέει την πλάκα	$\dot{\mathbf{E}} = \frac{\dot{\mathbf{J}}}{\sigma} = \dot{I} \frac{(1+j)}{2\sigma\delta} \frac{\cosh\left[(1+j)\frac{z}{\delta}\right]}{\sinh\left[(1+j)\frac{b}{\delta}\right]} \mathbf{x}_{0}$
XI.58	Μαγνητική επαγωγή ως συνάρτηση του συνολικού ρεύματος που διαρρέει την πλάκα	$\dot{\mathbf{B}} = -\frac{\nabla \times \dot{\mathbf{E}}}{j\omega} = -\frac{\dot{I}}{\omega\sigma\delta^2} \frac{\sinh\left[(1+j)\frac{z}{\delta}\right]}{\sinh\left[(1+j)\frac{b}{\delta}\right]} \mathbf{y}_0 = -\frac{\mu\dot{I}}{2} \frac{\sinh\left[(1+j)\frac{z}{\delta}\right]}{\sinh\left[(1+j)\frac{b}{\delta}\right]} \mathbf{y}_0$
XI.59	Μαγνητική πεδιακή ένταση ως συνάρτηση του συνολικού ρεύματος που διαρρέει την πλάκα	$\dot{\mathbf{H}} = \frac{\dot{\mathbf{B}}}{\mu} = -\frac{\dot{I}}{2} \frac{\sinh\left[(1+j)\frac{z}{\delta}\right]}{\sinh\left[(1+j)\frac{b}{\delta}\right]} \mathbf{y}_{0}$

XI.60	Μαγνητική πεδιακή ένταση στις επιφάνειες της πλάκας	$\dot{\mathbf{H}}\Big _{z=-b}=-\dot{\mathbf{H}}\Big _{z=b}=rac{\dot{I}}{2}\mathbf{y}_{0}=\dot{H}_{s}\mathbf{y}_{0}$
XI.61	Ηλεκτρική πεδιακή ένταση στις επιφάνειες της πλάκας	$\dot{\mathbf{E}}_{s} = \dot{\mathbf{E}}\Big _{z=b} = \dot{\mathbf{E}}\Big _{z=-b} = \frac{\dot{\mathbf{J}}_{s}}{\sigma} = \dot{I}\frac{(1+j)}{2\sigma\delta} \operatorname{coth}\left[(1+j)\frac{b}{\delta}\right]\mathbf{x}_{0}$
XI.62	Μέση χρονική ισχύς ωμικών απωλειών στην πλάκα	$\langle P \rangle = \frac{\left \dot{I} \right ^2}{4\sigma\delta} \frac{\sinh\left(\frac{2b}{\delta}\right) + \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) - \cos\left(\frac{2b}{\delta}\right)}$
XI.63	Ωμική αντίσταση τμήματος της πλάκας με μοναδιαίο μήκος κατά τους άξονες x και y	$\langle P \rangle = \frac{1}{2} \left \dot{I} \right ^2 R \Longrightarrow R = \frac{1}{2\sigma\delta} \frac{\sinh\left(\frac{2b}{\delta}\right) + \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) - \cos\left(\frac{2b}{\delta}\right)}$
XI.64	Τάση στην επιφάνεια της πλάκας σε μοναδιαίο μήκος κατά τη διεύθυνση του άξονα x	$\dot{V} = \frac{\dot{J}_s}{\sigma}$
XI.65	Σύνθετη αντίσταση τμήματος της πλάκας με μοναδιαίο μήκος κατά τους άξονες x και y	$Z = \frac{\dot{V}}{\dot{I}} = \frac{1}{2\sigma\delta} \frac{(1+j)}{\tanh\left[(1+j)\frac{b}{\delta}\right]}$ $= \frac{1}{2\sigma\delta} \frac{\sinh\left(\frac{2b}{\delta}\right) + \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) - \cos\left(\frac{2b}{\delta}\right)} + j\frac{1}{2\sigma\delta} \frac{\sinh\left(\frac{2b}{\delta}\right) - \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) - \cos\left(\frac{2b}{\delta}\right)}$
XI.66	Αντίσταση στο συνεχές ρεύμα	$R_0 = \frac{1}{2b\sigma}$
XI.67	Λόγος της αντίστασης στο εναλλασσόμενο ρεύμα προς την αντίσταση στο συνεχές ρεύμα	$f = \frac{R}{R_0} = \frac{b}{\delta} \frac{\sinh\left(\frac{2b}{\delta}\right) + \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) - \cos\left(\frac{2b}{\delta}\right)}$
XI.68	Λόγος αντιστάσεων για μικρές τιμές του λόγου b / δ	$f = \frac{R}{R_0} \cong 1 + \frac{4}{45} \left(\frac{b}{\delta}\right)^4$

	Ηλεκτρικό επιδερμικό φαινόμενο σε αγώγιμη πλάκα		
XI.69	Λόγος της πυκνότητας ρεύματος στο εσωτερικό της πλάκας προς την πυκνότητα ρεύματος στις επιφάνειές της	$f_J = \frac{\left \mathbf{\dot{J}} \right }{\left \mathbf{\dot{J}}_s \right } = \sqrt{\frac{\cosh\left(2\frac{z}{\delta}\right) + \cos\left(2\frac{z}{\delta}\right)}{\cosh\left(2\frac{b}{\delta}\right) + \cos\left(2\frac{b}{\delta}\right)}}$	
XI.70	Λόγος της ηλεκτρικής πεδιακής έντασης στο εσωτερικό της πλάκας προς την ηλεκτρική ένταση στις επιφάνειές της	$f_{\scriptscriptstyle E} = \frac{\left \dot{\mathbf{E}} \right }{\left \dot{\mathbf{E}}_{\scriptscriptstyle s} \right } = \sqrt{\frac{\cosh\left(2\frac{z}{\delta}\right) + \cos\left(2\frac{z}{\delta}\right)}{\cosh\left(2\frac{b}{\delta}\right) + \cos\left(2\frac{b}{\delta}\right)}}$	

XI.71	Λόγος της μαγνητικής πεδιακής έντασης (επαγωγής) στο εσωτερικό της πλάκας προς την μαγνητική ένταση (επαγωγή) στις επιφάνειές της	$f_{\scriptscriptstyle B} = f_{\scriptscriptstyle H} = rac{\left \dot{\mathbf{B}} ight }{\left \dot{\mathbf{B}}_{\scriptscriptstyle s} ight } = rac{\left \dot{\mathbf{H}} ight }{\left \dot{\mathbf{H}}_{\scriptscriptstyle s} ight } = rac{\left \sinh\left[(1+j)rac{z}{\delta} ight] ight }{\left \sinh\left[(1+j)rac{b}{\delta} ight] ight } =$
		$= \sqrt{\frac{\cosh\left(2\frac{z}{\delta}\right) - \cos\left(2\frac{z}{\delta}\right)}{\cosh\left(2\frac{b}{\delta}\right) - \cos\left(2\frac{b}{\delta}\right)}}$

Μαγνητικό επιδερμικό φαινόμενο σε αγώγιμη πλάκα (η πλάκα είναι τοποθετημένη σε εναλλασσόμενο μαγνητικό πεδίο παράλληλο προς τις επιφάνειες της και ισχύει $\dot{\mathbf{H}}(z)=\dot{\mathbf{H}}(-z)$)		
XI.72	Εξίσωση διάχυσης	$\frac{d^2 \dot{\mathbf{H}}}{dz^2} - j\omega\mu\sigma\dot{\mathbf{H}} = 0$
XI.73	Μαγνητική πεδιακή ένταση στο εσωτερικό της πλάκας	$\dot{\mathbf{H}} = \frac{\dot{H}_s \left[e^{-(1+j)\frac{z}{\delta}} + e^{(1+j)\frac{z}{\delta}} \right]}{2\cosh\left[(1+j)\frac{b}{\delta} \right]} \mathbf{y}_0 = \dot{H}_s \frac{\cosh\left[(1+j)\frac{z}{\delta} \right]}{\cosh\left[(1+j)\frac{b}{\delta} \right]} \mathbf{y}_0$
XI.74	Ηλεκτρική πεδιακή ένταση στο εσωτερικό της πλάκας	$\dot{\mathbf{E}} = \frac{\nabla \times \dot{\mathbf{H}}}{\sigma} = -\frac{1}{\sigma} \frac{\partial \dot{H}}{\partial z} \mathbf{x}_0 = -\dot{H}_s \frac{1+j}{\sigma \delta} \frac{\sinh\left[(1+j)\frac{z}{\delta}\right]}{\cosh\left[(1+j)\frac{b}{\delta}\right]} \mathbf{x}_0$
XI.75	Μαγνητική επαγωγή στο εσωτερικό της πλάκας	$\dot{\mathbf{B}} = \mu \dot{H}_s \frac{\cosh\left[(1+j)\frac{z}{\delta}\right]}{\cosh\left[(1+j)\frac{b}{\delta}\right]} \mathbf{y}_0$
X1.76	Πυκνότητα ρεύματος στο εσωτερικό της πλάκας	$\dot{\mathbf{J}} = -\dot{H}_s \frac{1+j}{\delta} \frac{\sinh\left[(1+j)\frac{z}{\delta}\right]}{\cosh\left[(1+j)\frac{b}{\delta}\right]} \mathbf{x}_0$
XI.77	Λόγος της μαγνητικής πεδιακής έντασης (επαγωγής) στο εσωτερικό της πλάκας προς την μαγνητική ένταση (επαγωγή) στις επιφάνειές της	$f_{H} = f_{B} = \frac{\left \dot{H}\right }{\left \dot{H}_{s}\right } = \frac{\left \dot{B}\right }{\left \dot{B}_{s}\right } = \frac{\left \cosh\left[(1+j)\frac{z}{\delta}\right]\right }{\left \cosh\left[(1+j)\frac{b}{\delta}\right]\right } = \sqrt{\frac{\cosh\left(\frac{2z}{\delta}\right) + \cos\left(\frac{2z}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) + \cos\left(\frac{2b}{\delta}\right)}}$
XI.78	Λόγος της ηλεκτρικής πεδιακής έντασης (πυκνότητας ρεύματος) στο εσωτερικό της πλάκας προς την ηλεκτρική ένταση (πυκνότητα ρεύματος) στις επιφάνειές της	$f_J = f_E = \frac{\left \dot{j}\right }{\left \dot{j}_s\right } = \frac{\left \dot{E}\right }{\left \dot{E}_s\right } = \frac{\left \sinh\left[(1+j)\frac{z}{\delta}\right]\right }{\left \sinh\left[(1+j)\frac{b}{\delta}\right]\right } = \sqrt{\frac{\cosh\left(\frac{2z}{\delta}\right) - \cos\left(\frac{2z}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) - \cos\left(\frac{2b}{\delta}\right)}}$
XI.79	Μέση τιμή της μαγνητικής επαγωγής	$\dot{B}_{av} = rac{1}{2b} \int_{-b}^{b} \dot{B} dz = rac{\mu \dot{H}_s}{1+j} rac{\delta}{b} anherefore igg[(1+j) rac{b}{\delta} igg]$
XI.80	Μιγαδική μαγνητική διαπερατότητα	$\mu_{c} = \frac{\dot{B}_{av}}{\dot{H}_{s}} = \frac{\mu}{(1+j)} \frac{\delta}{b} \tanh\left[(1+j)\frac{b}{\delta}\right] =$ $= \frac{\mu\delta}{b} \frac{1}{1+j} \frac{\sinh\left(\frac{2b}{\delta}\right) + j\sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) + \cos\left(\frac{2b}{\delta}\right)} = \mu_{c} e^{j\psi}$

XI.81	Μέτρο και γωνιακή απόκλιση της μιγαδικής μαγνητικής διαπερατότητας	$\begin{aligned} \mu_c &= \frac{\mu}{\sqrt{2}} \frac{\delta}{b} \left[\frac{\cosh\left(\frac{2b}{\delta}\right) - \cos\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) + \cos\left(\frac{2b}{\delta}\right)} \right]^{1/2} \\ \psi &= \arctan\frac{\sinh\left(\frac{2b}{\delta}\right) - \sin\left(\frac{2b}{\delta}\right)}{\sinh\left(\frac{2b}{\delta}\right) + \sin\left(\frac{2b}{\delta}\right)} \end{aligned}$
XI.82	Μέτρο της μιγαδικής μαγνητικής διαπερατότητας όταν $b\gg\delta$	$ \mu_c \cong rac{\mu}{\sqrt{2}}rac{\delta}{b}$
XI.83	Μέση χρονική ισχύς απωλειών που οφείλονται στα αναπτυσσόμενα δινορρεύματα στο υλικό της πλάκας	$\langle P angle = rac{\left \dot{H}_{s} ight ^{2}}{\sigma\delta} rac{\sinh\left(rac{2b}{\delta} ight) - \sin\left(rac{2b}{\delta} ight)}{\cosh\left(rac{2b}{\delta} ight) + \cos\left(rac{2b}{\delta} ight)}$

Επιδερμικό φαινόμενο σε κυλινδρικό αγωγό ακτίνας α πολύ μεγάλου μήκους		
	που διαρρέετ	αι από ημιτονοειδές ρεύμα İ
XI.84	Εξίσωση διάχυσης	$\begin{aligned} \nabla^2 \dot{\mathbf{J}} - j\omega\mu\sigma\dot{\mathbf{J}} &= 0 \Leftrightarrow \frac{d^2 \dot{J}}{dr^2} + \frac{1}{r}\frac{d\dot{J}}{dr} - j\mu\sigma\omega\dot{J} = 0 \Leftrightarrow \\ \Leftrightarrow \frac{d^2 \dot{J}}{dr^2} + \frac{1}{r}\frac{d\dot{J}}{dr} + \kappa^2\dot{J} = 0, \text{ for } \kappa^2 = -j\mu\sigma\omega = -\frac{2j}{\delta^2} \end{aligned}$
XI.85	Πυκνότητα ρεύματος στο εσωτερικό του κυλίνδρου	$\dot{\mathbf{J}} = \frac{\kappa \dot{I}}{2\pi a J_1(\kappa a)} J_0(\kappa r) \mathbf{z}_0$ $J_0, J_1 : \text{συναρτήσεις Bessel 1ov είδους (μηδενικής και πρώτης τάξης αντίστοιχα)}$
XI.86	Μαγνητική πεδιακή ένταση στο εσωτερικό του κυλίνδρου	$\dot{\mathbf{H}}=rac{\dot{I}}{2\pi a J_1(\kappa a)}J_1(\kappa r)oldsymbol{arphi}_0$
XI.87	Ηλεκτρική πεδιακή ένταση στο εσωτερικό του κυλίνδρου	$\dot{\mathbf{E}} = \frac{\dot{\mathbf{J}}}{\sigma} = \frac{\kappa \dot{I}}{2\pi\sigma a J_1(\kappa a)} J_0(\kappa r) \mathbf{z}_0$
XI.88	Μαγνητική επαγωγή στο εσωτερικό του κυλίνδρου	$\dot{\mathbf{B}} = \mu \dot{\mathbf{H}} = \frac{\mu \dot{I}}{2\pi a J_1(\kappa a)} J_1(\kappa r) \boldsymbol{\varphi}_0$
XI.89	Πυκνότητα ρεύματος πάνω στον άξονα του αγωγού $(r=0)$	${\dot J_a} = rac{\kappa {\dot I}}{2\pi a J_1(\kappa a)}$
XI.90	Πυκνότητα ρεύματος πάνω στην εξωτερική επιφάνεια του αγωγού (r = a)	${\dot J}_{_s}={\dot J}_{_a}J_{_0}(\kappa a)$
XI.91	Πυκνότητα ρεύματος στο εσωτερικό του αγωγού	$\dot{J}=\dot{J}_{a}J_{0}(\kappa r)$
XI.92	Γενική σχέση για το όρισμα κr	$\kappa r = r\sqrt{-j}\sqrt{\mu\sigma\omega} = \sqrt{2}\frac{r}{\delta}\sqrt{-j} = \sqrt{2}\frac{r}{\delta}e^{-j\frac{\pi}{4}} = \frac{r}{\delta}(1-j)$

XI.93	Ωμικές απώλειες και άεργη ισχύς, όπου S η εξωτερική επιφάνεια του αγωγού	$-\frac{1}{2} \oiint_{S} (\dot{\mathbf{E}} \times \overset{*}{\mathbf{H}}) \cdot d\mathbf{S} = \langle P \rangle + j \langle Q \rangle = \frac{1}{2} \left \dot{I} \right ^{2} R + j \frac{1}{2} \left \dot{I} \right ^{2} X = \frac{1}{2} \left \dot{I} \right ^{2} Z$
XI.94	Ανά μονάδα μήκους σύνθετη αντίσταση του αγωγού	$Z = R + jX = \frac{-\frac{1}{2} \oiint_{s} (\dot{\mathbf{E}} \times \mathbf{H}) d\mathbf{S}}{\left \dot{I}\right ^{2}} = \frac{1}{\sqrt{2}\pi\sigma\alpha\delta} \frac{\left J_{0}(\kappa\alpha)\right }{\left J_{1}(\kappa\alpha)\right } e^{j(\psi_{0}-\psi_{1}-45^{\circ})}$ $R = \frac{1}{\sqrt{2}\pi\sigma\alpha\delta} \frac{\left J_{0}(\kappa\alpha)\right }{\left J_{1}(\kappa\alpha)\right } \cos(\psi_{0}-\psi_{1}-45^{\circ})$ $X = \frac{1}{\sqrt{2}\pi\sigma\alpha\delta} \frac{\left J_{0}(\kappa\alpha)\right }{\left J_{1}(\kappa\alpha)\right } \sin(\psi_{0}-\psi_{1}-45^{\circ})$
XI.95	Ανά μονάδα μήκους αντίσταση του αγωγού στο συνεχές ρεύμα	$R_0 = \frac{1}{\pi \sigma a^2}$
XI.96	Λόγος της αντίστασης στο εναλλασσόμενο ρεύμα προς την αντίσταση στο συνεχές	$f = \frac{R}{R_0} = \frac{1}{\sqrt{2}} \frac{a}{\delta} \frac{\left J_0(\kappa\alpha)\right }{\left J_1(\kappa\alpha)\right } \cos(\psi_0 - \psi_1 - 45^\circ)$
XI.97	Λόγος αντιστάσεων για σχετικά παχείς αγωγούς, π.χ. όταν $a / \delta > 2$	$\frac{R}{R_0} \approx \frac{1}{2} \left(\frac{a}{\delta} + \frac{1}{2} \right)$

Απώλειες γειτνίασης (σε σύστημα δύο παραλλήλων αγωγίμων πλακών (1) και (2) πάχους 2b με πολύ μεγάλο μήκος κατά τον άζονα x, στο οποίο το εναλλασσόμενο ρεύμα ^İ , που είναι παράλληλο προς τον άζονα y προσάγεται από τον έναν αγωγό και επιστρέφει από τον άλλον)		
XI.98	Ένταση του μαγνητικού πεδίου που οφείλεται στον αγωγό (2) στις δύο επιφάνειες του αγωγού (1) (İ το ανά μονάδα μήκους κατά x ρεύμα του αγωγού)	$\dot{\mathbf{H}}_{s} = \frac{\dot{I}}{2} \mathbf{x}_{0} $ (1) (2) (2) (3) (3) (4) (4) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5
XI.99	Μέσες χρονικές απώλειες στον αγωγό (1) (ανά μονάδα μήκους κατά x και y)	$ \langle P_1 \rangle = \langle P_{1,1} \rangle + \langle P_{2,1} \rangle = \frac{\left \dot{I} \right ^2}{4\sigma\delta} \cdot \\ \cdot \left[\frac{\sinh\left(\frac{2b}{\delta}\right) + \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) - \cos\left(\frac{2b}{\delta}\right)} + \frac{\sinh\left(\frac{2b}{\delta}\right) - \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) + \cos\left(\frac{2b}{\delta}\right)} \right] $
XI.100	Μέσες χρονικές απώλειες του συστήματος (ανά μονάδα μήκους κατά x και y)	$\begin{split} \langle P \rangle &= 2 \left\langle P_1 \right\rangle = \frac{1}{2} \left \dot{I} \right ^2 R = \frac{\left \dot{I} \right ^2}{2\sigma\delta} \cdot \\ &\cdot \left[\frac{\sinh\left(\frac{2b}{\delta}\right) + \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) - \cos\left(\frac{2b}{\delta}\right)} + \frac{\sinh\left(\frac{2b}{\delta}\right) - \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) + \cos\left(\frac{2b}{\delta}\right)} \right] \end{split}$
XI.101	Ανά μονάδα μήκους και επιφανείας αντίσταση της γραμμής των δύο αγωγών (ανά μονάδα μήκους κατά x και y)	$R = \frac{1}{\sigma\delta} \left[\frac{\sinh\left(\frac{2b}{\delta}\right) + \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) - \cos\left(\frac{2b}{\delta}\right)} + \frac{\sinh\left(\frac{2b}{\delta}\right) - \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) + \cos\left(\frac{2b}{\delta}\right)} \right]$
XI.102	Αντίσταση της γραμμής στο συνεχές ρεύμα (ανά μονάδα μήκους κατά x και y)	$R_0 = \frac{1}{\sigma b}$

XI.103	Λόγος της αντίστασης στο εναλλασσόμενο ρεύμα προς την αντίσταση στο συνεχές	$\frac{R}{R_0} = \frac{b}{\delta} \left[\frac{\sinh\left(\frac{2b}{\delta}\right) + \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) - \cos\left(\frac{2b}{\delta}\right)} + \frac{\sinh\left(\frac{2b}{\delta}\right) - \sin\left(\frac{2b}{\delta}\right)}{\cosh\left(\frac{2b}{\delta}\right) + \cos\left(\frac{2b}{\delta}\right)} \right]$ $= \frac{2b}{\delta} \frac{\sinh\left(\frac{4b}{\delta}\right) + \sin\left(\frac{4b}{\delta}\right)}{\cosh\left(\frac{4b}{\delta}\right) - \cos\left(\frac{4b}{\delta}\right)}$
--------	---	---

Διάλοση Επιπελού Κύματος κατά Τύχουσα Διευθύνση

XI.104	 n₀: μοναδιαίο διάνυσμα παράλληλο προς τη διεύθυνση διάδοσης ζ: απόσταση, από την αρχή Ο, τυχόντος επιπέδου καθέτου προς τη διεύθυνση διάδοσης r: διανυσματική απόσταση από την αρχή Ο των σημείων του 	$\zeta = \mathbf{n}_0 \cdot \mathbf{r}$
XI.105	Ηλεκτρική πεδιακή ένταση	$\dot{\mathbf{E}} = \dot{\mathbf{E}}_{0i} e^{-\gamma\zeta} + \dot{\mathbf{E}}_{0r} e^{\gamma\zeta} = \dot{\mathbf{E}}_{0i} e^{-\gamma\mathbf{n}\cdot\mathbf{r}} + \dot{\mathbf{E}}_{0r} e^{\gamma\mathbf{n}\cdot\mathbf{r}}$
XI.106	Μαγνητική πεδιακή ένταση	$\dot{\mathbf{H}} = \dot{\mathbf{H}}_{0i} e^{-\gamma\zeta} + \dot{\mathbf{H}}_{0r} e^{\gamma\zeta} = \frac{1}{\eta} \Big(\mathbf{n}_0 \times \dot{\mathbf{E}}_{0i} e^{-\gamma \mathbf{n} \cdot \mathbf{r}} - \mathbf{n}_0 \times \dot{\mathbf{E}}_{0r} e^{\gamma \mathbf{n} \cdot \mathbf{r}} \Big)$
XI.107	Μέση χρονική τιμή της ανά μονάδα επιφανείας διαδιδόμενης ισχύος	$\langle \mathbf{P} angle = rac{1}{2\eta} \operatorname{Re} \left\{ \left \dot{\mathbf{E}}_{0i} \right ^2 \mathbf{n}_0 - \left \dot{\mathbf{E}}_{0r} \right ^2 \mathbf{n}_0 ight\} = rac{\left \dot{\mathbf{E}}_{0i} \right ^2}{2\eta} \mathbf{n}_0 - rac{\left \dot{\mathbf{E}}_{0r} \right ^2}{2\eta} \mathbf{n}_0 = \left\langle \mathbf{P}_i \right\rangle - \left\langle \mathbf{P}_r \right\rangle$
XI.108	Μέση χρονική ισχύς προσπίπτοντος κύματος	$ig\langle \mathbf{P}_i ig angle = rac{\left \dot{\mathbf{E}}_{0i} ight ^2}{2\eta} \mathbf{n}_0$
XI.109	Μέση χρονική ισχύς ανακλώμενου κύματος	$\left\langle \mathbf{P}_{r} ight angle =rac{\left \dot{\mathbf{E}}_{0r} ight ^{2}}{2\eta}\mathbf{n}_{0}$
XI.110	Ταχύτητα ομάδας	$\upsilon_g = rac{dz}{dt} = \left(rac{d\omega}{deta} ight)_{\!\!eta=eta_0}$

ΤΟ ΘΕΩΡΗΜΑ ΤΗΣ ΑΜΟΙΒΑΙΟΤΗΤΑΣ

XI.111	Διαφορική διατύπωση του θεωρήματος της αμοιβαιότητας	$ abla \cdot (\dot{\mathbf{E}}_1 imes \dot{\mathbf{H}}_2 - \dot{\mathbf{E}}_2 imes \dot{\mathbf{H}}_1) = \dot{\mathbf{E}}_2 \cdot \dot{\mathbf{J}}_1 - \dot{\mathbf{E}}_1 \cdot \dot{\mathbf{J}}_2$
XI.112	Ολοκληρωτική διατύπωση του θεωρήματος της αμοιβαιότητας	$ \oint \!$

XI.113	Μαθηματική διατύπωση του θεωρήματος της αμοιβαιότητας $(\dot{\mathbf{J}}_1 = \dot{\mathbf{J}}_2 = 0)$	$\nabla \cdot (\dot{\mathbf{E}}_1 \times \dot{\mathbf{H}}_2 - \dot{\mathbf{E}}_2 \times \dot{\mathbf{H}}_1) = 0$ $\oiint_{S} (\dot{\mathbf{E}}_1 \times \dot{\mathbf{H}}_2 - \dot{\mathbf{E}}_2 \times \dot{\mathbf{H}}_1) \cdot d\mathbf{S} = 0$
XI.114	Το θεώρημα της αμοιβαιότητας, όταν η επιφάνειας <i>S</i> που περικλείει τον όγκο <i>V</i> είναι πολύ απομακρυσμένη από τις πηγές	$\iiint_V (\dot{\mathbf{E}}_2 \cdot \dot{\mathbf{J}}_1) dV = \iiint_V (\dot{\mathbf{E}}_1 \cdot \dot{\mathbf{J}}_2) dV$

ΑΝΑΚΛΑΣΗ ΚΑΙ ΔΙΑΘΛΑΣΗ ΕΠΙΠΕΔΟΥ ΚΥΜΑΤΟΣ

Νομοι Ανακλάσης – Διαθλάσης Επιπελού Κύματος

XII.1	Κυματικός αριθμός (n : διεύθυνση διάδοσης του κύματος)	$k = \beta = \frac{\omega}{v_p} = \omega \sqrt{\mu \varepsilon} , \mathbf{k} = k \mathbf{n} = \omega \sqrt{\mu \varepsilon} \mathbf{n}$
XII.2	Επίπεδο Η/Μ κύμα για διάδοση παράλληλη προς τη θετική διεύθυνση του μοναδιαίου διανύσματος n	$\begin{split} \dot{\mathbf{E}} &= \dot{\mathbf{E}}_{0} e^{-\mathbf{j} \mathbf{k} \cdot \mathbf{r}} \\ \dot{\mathbf{H}} &= \dot{\mathbf{H}}_{0} e^{-\mathbf{j} \mathbf{k} \cdot \mathbf{r}} = \frac{\mathbf{n} \times \dot{\mathbf{E}}}{\eta} = \frac{\mathbf{k} \times \dot{\mathbf{E}}}{\mu \omega} \end{split}$
XII.3	Ένταση ηλεκτρικού και μαγνητικού πεδίου προσπίπτοντος κύματος στην επίπεδη διαχωριστική επιφάνεια δύο μέσων 1 και 2 (πρόσπτωση από το μέσο 1 στο μέσο 2)	$\begin{split} \dot{\mathbf{E}}_{i} &= \dot{\mathbf{E}}_{0i} e^{-\mathbf{k}_{i}\cdot\mathbf{r}} \\ \dot{\mathbf{H}}_{i} &= \dot{\mathbf{H}}_{0i} e^{-\mathbf{k}_{i}\cdot\mathbf{r}} = \frac{\mathbf{n}_{i} \times \dot{\mathbf{E}}_{i}}{\eta_{1}} = \frac{\mathbf{k}_{i} \times \dot{\mathbf{E}}_{i}}{\mu_{1}\omega} \end{split}$
XII.4	Ένταση ηλεκτρικού και μαγνητικού πεδίου ανακλώμενου κύματος	$\begin{split} \dot{\mathbf{E}}_r &= \dot{\mathbf{E}}_{0r} e^{-j\mathbf{k}_r \cdot \mathbf{r}} \\ \dot{\mathbf{H}}_r &= \dot{\mathbf{H}}_{0r} e^{-j\mathbf{k}_r \cdot \mathbf{r}} = \frac{\mathbf{n}_r \times \dot{\mathbf{E}}_r}{\eta_1} = \frac{\mathbf{k}_r \times \dot{\mathbf{E}}_r}{\mu_1 \omega} \end{split}$
XII.5	Ένταση ηλεκτρικού και μαγνητικού πεδίου διαθλώμενου κύματος	$\begin{split} \dot{\mathbf{E}}_t &= \dot{\mathbf{E}}_{0t} e^{-\jmath \mathbf{k}_t \cdot \mathbf{r}} \\ \dot{\mathbf{H}}_t &= \dot{\mathbf{H}}_{0t} e^{-\jmath \mathbf{k}_t \cdot \mathbf{r}} = \frac{\mathbf{n} \times \dot{\mathbf{E}}_t}{\eta_2} = \frac{\mathbf{k}_t \times \dot{\mathbf{E}}_t}{\mu_2 \omega} \end{split}$
XII.6	Γενικές σχέσεις μεταξύ γωνιών πρόσπτωσης, ανάκλασης και διάθλασης	$\begin{aligned} \theta_i &= \theta_r \\ \frac{\sin \theta_i}{\sin \theta_t} &= \frac{\upsilon_1}{\upsilon_2} \end{aligned}$
XII.7	Δείκτης διάθλασης μέσου με διηλεκτρική σταθερά ε και μαγνητική διαπερατότητα μ	$n = \frac{c}{\upsilon} = \sqrt{\frac{\mu\varepsilon}{\mu_0\varepsilon_0}} = \sqrt{\mu_r\varepsilon_r}$
XII.8	Νόμος του Snell (n_{12} είναι ο σχετικός δείκτης διάθλασης του μέσου 2 ως προς το μέσο 1)	$\frac{\sin \theta_i}{\sin \theta_t} = \sqrt{\frac{\mu_2 \varepsilon_2}{\mu_1 \varepsilon_1}} = \frac{n_2}{n_1} = n_{12}$
ХП.9	Μεταβολή της γωνίας θ_t σε σχέση με τους δείκτες διάθλασης	$egin{aligned} n_1 < n_2 &\Rightarrow heta_i < heta_i \ n_1 > n_2 &\Rightarrow heta_i > heta_i \end{aligned}$
ХП.10	Κρίσιμη γωνία θ_c : για την περίπτωση που $n_1 > n_2$, όταν $\theta_i > \theta_c$ δεν υπάρχει διάθλαση κύματος (ολική ανάκλαση)	$\sin \theta_c = \frac{n_2}{n_1} \cdot A \nu \ \mu_1 = \mu_2 \Rightarrow \sin \theta_c = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}}$ $\sin \theta_t = \frac{\sin \theta_i}{\sin \theta_c}$

Εξισωσείς του Fresnel

ХП.11	Γενικές σχέσεις πάνω στη διαχωριστική επιφάνεια των δύο μέσων (n είναι μοναδιαίο διάνυσμα κάθετο στη διαχωριστική επιφάνεια)	$\begin{split} \mathbf{n} \times (\dot{\mathbf{E}}_{i} + \dot{\mathbf{E}}_{r}) \Big _{S} &= \mathbf{n} \times \dot{\mathbf{E}}_{t} \Big _{S} \\ \mathbf{n} \times (\dot{\mathbf{H}}_{i} + \dot{\mathbf{H}}_{r}) \Big _{S} &= \mathbf{n} \times \dot{\mathbf{H}}_{t} \Big _{S} \\ \frac{1}{\mu_{1}} \Big[\mathbf{n} \times (\mathbf{k}_{i} \times \dot{\mathbf{E}}_{i} + \mathbf{k}_{r} \times \dot{\mathbf{E}}_{r}) \Big] \Big _{S} &= \frac{1}{\mu_{2}} \Big[\mathbf{n} \times (\mathbf{k}_{t} \times \dot{\mathbf{E}}_{t}) \Big] \Big _{S} \\ \frac{1}{\eta_{1}} \Big[\mathbf{n} \times (\mathbf{n}_{i} \times \dot{\mathbf{E}}_{i} + \mathbf{n}_{r} \times \dot{\mathbf{E}}_{r}) \Big] \Big _{S} &= \frac{1}{\eta_{2}} \Big[\mathbf{n} \times (\mathbf{n}_{t} \times \dot{\mathbf{E}}_{t}) \Big] \Big _{S} \end{split}$
XII.12	Συντελεστής ανάκλασης	$R=\left(rac{\dot{E}_{0r}}{\dot{E}_{0i}} ight)$
XII.13	Συντελεστής διάθλασης (διάδοσης)	$T = \left(\frac{\dot{E}_{0t}}{\dot{E}_{0i}}\right)$

Διανύσμα Ε Καθέτο στο Επιπέλο της Προσπτώσης

	Απλοποιημένες σχέσεις του Fresnel	
	$\dot{E}_{_{0i}}+\dot{E}_{_{0r}}=\dot{E}_{_{0t}}$	\mathbf{k}_i H_i H_r \mathbf{k}_i
	$\frac{\cos\theta_i}{\dot{E}_{ii}}(\dot{E}_{ii}-\dot{E}_{ii}) = \frac{\cos\theta_i}{\dot{E}_{ii}}\dot{E}_{ii}$	
	η_1 η_2 η_2 η_2	$\begin{array}{c} E_i \\ \theta_i \\ \theta_r \end{array} \overset{\mathbf{n}}{\longrightarrow} \begin{array}{c} E_r \\ E_r \end{array}$
ХП.14	Σγέσεις πλατών	μ_1, ε_1
	$\dot{E} = \dot{E} \qquad 2\eta_2 \cos \theta_i$	μ_2, ε_2 θ_1
	$E_{0t} = E_{0i} \overline{\eta_2 \cos heta_i + \eta_1 \cos heta_t}$	
	$\dot{E}_{i} = \dot{E}_{i} \; rac{\eta_{2}\cos heta_{i} - \eta_{1}\cos heta_{t}}{\eta_{2}\cos heta_{i} - \eta_{1}\cos heta_{t}}$	
	$E_{0r} = E_{0i} = \eta_2 \cos heta_i + \eta_1 \cos heta_t$	$E_t \bigotimes H_t$
		k_{ι}
		$B_{i} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_i}{\theta_i}$
		$\eta_2 \cos heta_i + \eta_1 \cos heta_i$
		$=rac{\mu_2 an heta_t - \mu_1 an heta_i}{ an heta_i}$
	Συντελεστης ανακλασης	$\mu_2 an heta_t + \mu_1 an heta_i$
XII.15	$R_{\perp} = \left \frac{E_{0r}}{\dot{E}} \right $	$=rac{\eta_2\cos heta_i-\eta_1[1-(n_1/n_2)^2\sin^2 heta_i]^{1/2}}{(n_1/n_2)^2\sin^2 heta_i}$
	$\left(L_{0i} \right)_{\perp}$	$\eta_2 \cos heta_i + \eta_1 [1 - (n_1/n_2)^2 \sin^2 heta_i]^{1/2}$
		$\cos heta_i - [(\mu_1 arepsilon_2 / \mu_2 arepsilon_1) - (\mu_1 / \mu_2)^2 \sin^2 heta_i]^{1/2}$
	*	$=rac{1}{\cos heta_i+[(\mu_1arepsilon_2/\mu_2arepsilon_1)-(\mu_1/\mu_2)^2\sin^2 heta_i]^{1/2}}$
		$T_{i} = \frac{2\eta_2 \cos \theta_i}{2\eta_2 \cos \theta_i}$
		$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	Συντελεστής διάθλασης $T_{\perp} = \left(rac{\dot{E}_{0t}}{\dot{E}_{ot}} ight)$	$=\frac{2\mu_2\tan\theta_t}{1-1-2}$
XII.16		$\mu_2 \tan heta_t + \mu_1 \tan heta_i$
		$= \frac{2\eta_2 \cos \theta_i}{m \cos \theta_i + m \left[1 - (m + m)^2 \sin^2 \theta_i\right]^{1/2}}$
		$\eta_2 \cos \sigma_i + \eta_1 (1 - (n_1/n_2) \sin \sigma_i)$
		$=\frac{2\cos\theta_i}{\cos\theta_i + [(\mu c_i \mu c_i) - (\mu_i \mu)^2 \sin^2\theta_i]^{1/2}}$
		$\cos \sigma_i + \left\lfloor (\mu_1 \varepsilon_2 / \mu_2 \varepsilon_1) - (\mu_1 / \mu_2) \operatorname{SIII} \sigma_i \right\rfloor'$

XII.17 Σχέση σύνδεσης των R_{\perp}, T_{\perp} $1 + R_{\perp} = T_{\perp}$

Ειδική περίπτωση κάθετης πρόσπτωσης ($ heta_i=0$)		
XII.18	Συντελεστής ανάκλασης	$R_{\perp} = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = \frac{1 - \left(\mu_1 \varepsilon_2 / \mu_2 \varepsilon_1\right)^{1/2}}{1 + \left(\mu_1 \varepsilon_2 / \mu_2 \varepsilon_1\right)^{1/2}} = \frac{\mu_2 n_1 - \mu_1 n_2}{\mu_2 n_1 + \mu_1 n_2}$
XII.19	Συντελεστής διάθλασης	$T_{\perp} = \frac{2\eta_2}{\eta_1 + \eta_2} = \frac{2}{1 + (\mu_1 \varepsilon_2 / \mu_2 \varepsilon_1)^{1/2}} = \frac{2\mu_2 n_1}{\mu_2 n_1 + \mu_1 n_2}$

Ειδική περίπτωση πρόσπτωσης σε μέσα με $\mu_1=\mu_2$		
XII.20	Συντελεστής ανάκλασης	$R_{\perp} = \frac{\tan \theta_t - \tan \theta_i}{\tan \theta_t + \tan \theta_i} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t + \theta_i)}$
XII.21	Συντελεστής διάθλασης	$T_{\perp} = \frac{2 \tan \theta_t}{\tan \theta_t + \tan \theta_i} = \frac{(n_1/n_2) \sin 2\theta_i}{\sin(\theta_t + \theta_i)} = \frac{(\varepsilon_1/\varepsilon_2)^{1/2} \sin 2\theta_i}{\sin(\theta_t + \theta_i)}$

	Ειδική περίπτωση κάθετης πρόσπτωσης $(heta_i=0)$ σε μέσα με $\mu_1=\mu_2$		
XII.22	Συντελεστής ανάκλασης		$R_{\perp}=\frac{n_1-n_2}{n_1+n_2}$
XII.23	Συντελεστής διάθλασης		$T_{\perp}=\frac{2n_{\mathrm{l}}}{n_{\mathrm{l}}+n_{\mathrm{2}}}$

Διανύσμα Ε Παραλλήλο προς το Επιπέλο της Προσπτώσμε

VII 25	Συντελεστής ανάκλασης	$\begin{split} R_{ } &= \frac{\eta_1 \cos \theta_i - \eta_2 \cos \theta_i}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_i} \\ &= \frac{\mu_1 \sin 2\theta_i - \mu_2 \sin 2\theta_i}{\mu_1 \sin 2\theta_i + \mu_2 \sin 2\theta_i} \\ \eta_1 \cos \theta_i - \eta_2 \Big[1 - (n_1/n_2)^2 \sin^2 \theta_i \Big]^{1/2} \end{split}$
АП.23	$R_{ } = \left(rac{E_{0r}}{\dot{E}_{0i}} ight)_{ }$	$= \frac{1}{\eta_1 \cos \theta_i + \eta_2 \left[1 - (n_1/n_2)^2 \sin^2 \theta_i\right]^{1/2}}$
		$=\frac{\cos\theta_i - \left[\left(\mu_2\varepsilon_1/\mu_1\varepsilon_2\right) - \left(\varepsilon_1/\varepsilon_2\right)^2\sin^2\theta_i\right]^{1/2}}{\cos\theta_i + \left[\left(\mu_2\varepsilon_1/\mu_1\varepsilon_2\right) - \left(\varepsilon_1/\varepsilon_2\right)^2\sin^2\theta_i\right]^{1/2}}$
		$T_{ } = \frac{2\eta_2 \cos \theta_i}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_t}$
	Συντελεστής διάθλασης	$=\frac{4\mu_2\cos\theta_i\sin\theta_t}{\mu_1\sin2\theta_i+\mu_2\sin2\theta_t}$
XII.26	$T_{ }=\left(rac{\dot{E}_{0t}}{\dot{E}_{0i}} ight)_{ }$	$=\frac{2\eta_2\cos\theta_i}{\eta_1\cos\theta_i+\eta_2\left[1-(n_1/n_2)^2\sin^2\theta_i\right]^{-1/2}}$
		$=\frac{2\cos\theta_i(\mu_2\varepsilon_1/\mu_1\varepsilon_2)^{-1/2}}{\cos\theta_i+\left[(\mu_2\varepsilon_1/\mu_1\varepsilon_2)\cdot(\varepsilon_1/\varepsilon_2)^2\sin^2\theta_i\right]^{-1/2}}$
XII.27	Σχέση μεταξύ του συντελεστή ανάκλασης και του συντελεστή διάδοσης	$1-R_{ } = \frac{\cos\theta_t}{\cos\theta_i} T_{ }$

	Ειδική περίπτωση κάθετης πρόσπτωσης ($ heta_i=0$)		
XII.28	Συντελεστής ανάκλασης	$R_{ } = \frac{\eta_1 - \eta_2}{\eta_1 + \eta_2} = \frac{\mu_1 n_2 - \mu_2 n_1}{\mu_1 n_2 + \mu_2 n_1} = \frac{1 - (\mu_2 \varepsilon_1 / \mu_1 \varepsilon_2)^{1/2}}{1 + (\mu_2 \varepsilon_1 / \mu_1 \varepsilon_2)^{1/2}}$	
XII.29	Συντελεστής διάθλασης	$T_{ } = \frac{2\eta_2}{\eta_1 + \eta_2} = \frac{2\mu_2 n_1}{\mu_1 n_2 + \mu_2 n_1} = \frac{2(\mu_2 \varepsilon_1 / \mu_1 \varepsilon_2)^{1/2}}{1 + (\mu_2 \varepsilon_1 / \mu_1 \varepsilon_2)^{1/2}}$	

Ειδική περίπτωση πρόσπτωσης για μέσα με $\ \mu_1=\mu_2$		
XII.30	Συντελεστής ανάκλασης	$R_{ } = rac{ an(heta_i - heta_i)}{ an(heta_i + heta_i)}$
XII.31	Συντελεστής διάθλασης	$T_{\parallel} = rac{2\cos heta_i\sin heta_i}{\sin(heta_i+ heta_i)\cos(heta_i- heta_t)}$
XII.32	Ειδική περίπτωση κάθετης πρόσπτωσης	$\theta_i = 0 \Rightarrow \begin{cases} R_{ } = \frac{n_2 - n_1}{n_1 + n_2} \\ T_{ } = \frac{2n_1}{n_1 + n_2} \end{cases}$

XII.33	Γωνία Brewster ή γωνία πόλωσης για την οποία δεν υπάρχει ανάκλαση.	$\tan\theta_{\rm B}=\frac{n_2}{n_1}=\sqrt{\frac{\varepsilon_2}{\varepsilon_1}}$
--------	---	---

	Ο ΛΙΚΗ ΑΝΑΚΛΑΣΗ ($n_1 > n_2$ ΚΑΙ $\theta_i > \theta_c$)		
XII.34	Συνιστώσες του κυματάριθμου	$k_{ix} = k_{tx} = k_i \sin \theta_i$ $k_{tz} = \pm j k_t \sqrt{\left(\frac{\sin \theta_i}{\sin \theta_c}\right)^2 - 1} = \pm j a_s$ $a_s = k_t \sqrt{\left(\frac{\sin \theta_i}{\sin \theta_c}\right)^2 - 1}$	
XII.35	Διαθλώμενο ηλεκτρικό πεδίο	$\dot{\mathbf{E}}_t = \dot{\mathbf{E}}_{0t} e^{-a_s z} e^{-jeta_s x} \ eta_s = \omega \sqrt{\mu_1 arepsilon_1} \sin heta_i$	
XII.36	Ταχύτητα διάδοσης του κύματος παράλληλα προς την επιφάνεια	$\upsilon_s = \frac{\omega}{\beta_s} = \frac{1}{\sqrt{\mu_1 \varepsilon_1} \sin \theta_i} = \frac{\upsilon_1}{\sin \theta_i} = \frac{\upsilon_2}{\sin \theta_t} = \left(\frac{\sin \theta_c}{\sin \theta_i}\right) \upsilon_2$	
ХП.37	Συντελεστής ανάκλασης όταν η γωνία πρόσπτωσης είναι μεγαλύτερη από την κρίσιμη γωνία $(\theta_i > \theta_c)$	$\begin{split} R_{\perp} &= \left(\frac{\dot{E}_{0r}}{\dot{E}_{0i}}\right)_{\perp} = \frac{\eta_2 \cos \theta_i - j\eta_1 \left[(n_1/n_2)^2 \sin^2 \theta_i - 1\right]^{1/2}}{\eta_2 \cos \theta_i + j\eta_1 \left[(n_1/n_2)^2 \sin^2 \theta_i - 1\right]^{1/2}} \\ R_{\parallel} &= \left(\frac{\dot{E}_{0r}}{\dot{E}_{0i}}\right)_{\parallel} = \frac{\eta_1 \cos \theta_i - j\eta_2 \left[(n_1/n_2)^2 \sin^2 \theta_i - 1\right]^{1/2}}{\eta_1 \cos \theta_i + j\eta_2 \left[(n_1/n_2)^2 \sin^2 \theta_i - 1\right]^{1/2}} \\ R_{(\perp,\parallel)} &= e^{-j2\phi} \end{split}$	
ХП.38	Φασική απόκλιση μεταξύ των εντάσεων Ė _r , Ė _i για ένταση του ηλεκτρικού πεδίου κάθετη στο επίπεδο της πρόσπτωσης	$\begin{split} \psi_{\perp} &= 2\phi_{\perp} = 2 \arctan\left\{\frac{\eta_1 \left[(n_1/n_2)^2 \sin^2 \theta_i - 1\right]^{1/2}}{\eta_2 \cos \theta_i}\right\} \\ &= 2 \arctan\left\{\!\left(\frac{\mu_1 n_2}{\mu_2 n_1}\right)\!\frac{\left[(n_1/n_2)^2 \sin^2 \theta_i - 1\right]^{1/2}}{\cos \theta_i}\right\} \end{split}$	
ХП.39	Φασική απόκλιση μεταξύ των εντάσεων Ė _r , Ė _i για ένταση του ηλεκτρικού πεδίου παράλληλη στο επίπεδο της πρόσπτωσης	$\begin{split} \psi_{ } &= 2\phi_{ } = 2\arctan\left\{\frac{\eta_2\left[(n_1/n_2)^2\sin^2\theta_i - 1\right]^{1/2}}{\eta_1\cos\theta_i}\right\} = \\ &= 2\arctan\left\{\!\left(\frac{\mu_2 n_1}{\mu_1 n_2}\right)\!\frac{\left[(n_1/n_2)^2\sin^2\theta_i - 1\right]^{1/2}}{\cos\theta_i}\right\} \end{split}$	
XII.40	Σχέση μεταξύ των φασικών αποκλίσεων ψ_{\perp} και $\psi_{ }$	$\tan\!\left(\!\frac{\psi_{\perp}}{2}\right) \!=\! \left(\!\frac{\mu_1 n_2}{\mu_2 n_1}\!\right)^{\!\!2} \tan\!\left(\!\frac{\psi_{\parallel}}{2}\right)$	
XII.41	Φασική απόκλιση μεταξύ των εντάσεων $\dot{\mathbf{E}}_r$, $\dot{\mathbf{E}}_i$ για ένταση του ηλεκτρικού πεδίου κάθετη στο επίπεδο της πρόσπτωσης όταν $\mu_1 = \mu_2$	$\psi_{\perp} = 2 \arctan\left\{ \frac{\left[\sin^2 \theta_i - (n_2/n_1)^2\right]^{1/2}}{\cos \theta_i} \right\}$	

XII.42	Φασική απόκλιση μεταξύ των εντάσεων $\dot{\mathbf{E}}_r$, $\dot{\mathbf{E}}_i$ για ένταση του ηλεκτρικού πεδίου παράλληλη στο επίπεδο της πρόσπτωσης όταν $\mu_1 = \mu_2$	$\psi_{ } = 2 \arctan\left\{ \left(\frac{n_1}{n_2}\right)^2 \frac{\left[\sin^2 \theta_i - \left(n_2/n_1\right)^2\right]^{1/2}}{\cos \theta_i} \right\}$
XII.43	Σχέση σύνδεσης	$\tan\!\left(\!\frac{\psi_{\scriptscriptstyle \perp}}{2}\right) \!=\! \left(\!\frac{n_2}{n_1}\!\right)^{\!\!2} \tan\!\left(\!\frac{\psi_{\mid\mid}}{2}\right)$

Ενεργειακοι Συντελέστες Ανακλάσης και Διαθλάσης

XII.44	Ανά μονάδα επιφανείας μέση χρονική ισχύς που αντιστοιχεί στο προσπίπτον κύμα	$\left< \mathbf{P}_i \right> = rac{1}{2\eta_1} \mid \dot{E}_{0i} \mid^2 \mathbf{n}_i$
XII.45	Ανά μονάδα επιφανείας μέση χρονική ισχύς που αντιστοιχεί στο ανακλώμενο κύμα	$ig\langle \mathbf{P}_r ig angle = rac{1}{2\eta_1} \dot{E}_{0r} ^2 \mathbf{n}_r$
XII.46	Ανά μονάδα επιφανείας μέση χρονική ισχύς που αντιστοιχεί στο διαθλώμενο κύμα	$ig\langle \mathbf{P}_t ig angle = rac{1}{2\eta_2} \mid \dot{E}_{0t} \mid^2 \mathbf{n}_t$
XII.47	Ενεργειακός συντελεστής ανάκλασης (n : κάθετη συνιστώσα στη διαχωριστική επιφάνεια)	$e_{_{R}}=\left rac{\langle P_{_{rn}} angle}{\langle P_{_{in}} angle} ight =\left rac{\dot{E}_{_{0r}}}{\dot{E}_{_{0i}}} ight ^{2}=\left R ight ^{2}$
XII.48	Ενεργειακός συντελεστής διάθλασης	$e_{_{T}} = \left rac{\langle P_{_{tn}} angle}{\langle P_{_{in}} angle} ight = rac{\eta_1 \cos heta_t}{\eta_2 \cos heta_i} \left rac{\dot{E}_{_{0t}}}{\dot{E}_{_{0i}}} ight ^2 = rac{\eta_1 \cos heta_t}{\eta_2 \cos heta_i} T ^2$
XII.49	Γενικές σχέσεις σύνδεσης	$e_{R} + e_{T} = 1$ $\langle P_{in} \rangle + \langle P_{rn} \rangle = \langle P_{in} \rangle$

ΚΑΘΕΤΗ ΠΡΟΣΠΤΩΣΗ ΣΤΗΝ ΕΠΙΦΑΝΕΙΑ ΜΕΣΟΥ ΜΕ ΑΠΩΛΕΙΕΣ

XII.50	Συντελεστής ανάκλασης	$R = \frac{\dot{E}_{0r}}{\dot{E}_{0i}} = \frac{\eta_2 - \eta_1}{\eta_1 + \eta_2} = \frac{1 - (\mu_1/\mu_2)(\gamma_2/\gamma_1)}{1 + (\mu_1/\mu_2)(\gamma_2/\gamma_1)} = \\ = \frac{(\mu_2 \varepsilon_{r1}/\mu_1)^{1/2} - (\varepsilon_{r2} - j \sigma_2/\omega \varepsilon_0)^{1/2}}{(\mu_2 \varepsilon_{r1}/\mu_1)^{1/2} + (\varepsilon_{r2} - j \sigma_2/\omega \varepsilon_0)^{1/2}}$
XII.51	Συντελεστής διάθλασης	$T = \frac{\dot{E}_{0i}}{\dot{E}_{0i}} = \frac{2\eta_2}{\eta_1 + \eta_2} = \frac{2}{1 + (\mu_1/\mu_2)(\gamma_2/\gamma_1)} = \frac{2(\mu_2\varepsilon_{r1}/\mu_1)^{1/2}}{(\mu_2\varepsilon_{r1}/\mu_1)^{1/2} + (\varepsilon_{r2} - j\sigma_2/\omega\varepsilon_0)^{1/2}}$

XII.52	Suntelestic anaklash gria thn eidikt perfection $\mu_1\cong\mu_2\cong\mu_0$, $\varepsilon_{r1}=1$, $\varepsilon_{r2}=\varepsilon_r$	$R = \frac{1 - \left(\varepsilon_r - j\frac{\sigma_2}{\omega\varepsilon_0}\right)^{1/2}}{1 + \left(\varepsilon_r - j\frac{\sigma_2}{\omega\varepsilon_0}\right)^{1/2}}$
XII.53	Suntelestig diablashs gia thn eidiki periptises $\mu_1\cong\mu_2\cong\mu_0$, $\varepsilon_{r1}=1$, $\varepsilon_{r2}=\varepsilon_r$	$T=rac{2}{1+\left(arepsilon_r-jrac{\sigma_2}{\omegaarepsilon_0} ight)^{\!\!1/2}}$
XII.54	Συντελεστές ανάκλασης και διάθλασης για την ειδική περίπτωση που το μέσο 2 είναι πολύ καλός αγωγός $(\sigma_2 \ / \ \omega \varepsilon_2 \gg 1)$	$R \cong -1, T \ll 1$

Πλάγια Προσπτώση σε Μέσα με Απωλείες

XII.55	Γενική εξίσωση σύνδεσης των διανυσμάτων διάδοσης και των μιγαδικών σταθερών διάδοσης	$\gamma_1 \mathbf{n}_i \cdot \mathbf{r} = \gamma_1 \mathbf{n}_r \cdot \mathbf{r} = \gamma_2 \mathbf{n}_t \cdot \mathbf{r}$
XII.56	Νόμος του Snell για πρόσπτωση σε μέσα με απώλειες	$ heta_i = heta_r, rac{\sin heta_i}{\sin heta_t} = rac{\gamma_2}{\gamma_1}$

	Διάνυσμα Ε΄ κάθετο στο επίπεδο πρόσπτωσης		
XII.57	Συντελεστής ανάκλασης	$R_{\perp} = \left(\frac{\dot{E}_{0r}}{\dot{E}_{0i}}\right)_{\perp} = \frac{\mu_2 \gamma_1 \cos \theta_i - \mu_1 \gamma_2 \cos \theta_t}{\mu_2 \gamma_1 \cos \theta_i + \mu_1 \gamma_2 \cos \theta_t} = $ $= \frac{\mu_2 \gamma_1 \cos \theta_i - \mu_1 \sqrt{\gamma_2^2 - \gamma_1^2 \sin^2 \theta_i}}{\mu_2 \gamma_1 \cos \theta_i + \mu_1 \sqrt{\gamma_2^2 - \gamma_1^2 \sin^2 \theta_i}}$	
XII.58	Συντελεστής διάθλασης	$T_{\perp} = \left(\frac{\dot{E}_{0i}}{\dot{E}_{0i}}\right)_{\perp} = \frac{2\mu_2\gamma_1\cos\theta_i}{\mu_2\gamma_1\cos\theta_i + \mu_1\gamma_2\cos\theta_i} = \\ = \frac{2\mu_2\gamma_1\cos\theta_i}{\mu_2\gamma_1\cos\theta_i + \mu_1\sqrt{\gamma_2^2 - \gamma_1^2\sin^2\theta_i}}$	

Διάνυσμα Ε΄ παράλληλο στο επίπεδο πρόσπτωσης		
XII.59	Συντελεστής ανάκλασης	$R_{ } = \left(\frac{\dot{E}_{0r}}{\dot{E}_{0i}}\right)_{ } = \frac{\mu_1 \gamma_2 \cos \theta_i - \mu_2 \gamma_1 \cos \theta_t}{\mu_1 \gamma_2 \cos \theta_i + \mu_2 \gamma_1 \cos \theta_t} =$
		$=\frac{\mu_1\gamma_2^2\cos\theta_i-\mu_2\gamma_1\sqrt{\gamma_2^2-\gamma_1^2\sin^2\theta_i}}{\mu_1\gamma_2^2\cos\theta_i+\mu_2\gamma_1\sqrt{\gamma_2^2-\gamma_1^2\sin^2\theta_i}}$
XII.60	Συντελεστής διάθλασης	$T_{ } = \left(rac{\dot{E}_{0t}}{\dot{E}_{0i}} ight)_{ } = rac{2\gamma_1\mu_2\cos heta_i}{\mu_1\gamma_2\cos heta_i+\mu_2\gamma_1\cos heta_t} =$
		$=\frac{2\mu_2\gamma_1\gamma_2\cos\theta_i}{\mu_1\gamma_2^2\cos\theta_i+\mu_2\gamma_1\sqrt{\gamma_2^2-\gamma_1^2\sin^2\theta_i}}$

XII.61	Συντελεστής ανάκλασης για κάθετη πρόσπτωση $(\theta_i=0)$	$R = \frac{\mu_2 \gamma_1 - \mu_1 \gamma_2}{\mu_2 \gamma_1 + \mu_1 \gamma_2} = \frac{1 - (\mu_1/\mu_2)(\gamma_2/\gamma_1)}{1 + (\mu_1/\mu_2)(\gamma_2/\gamma_1)}$
XII.62	Συντελεστής διάθλασης για κάθετη πρόσπτωση $(\theta_i=0)$	$T = \frac{2\mu_2\gamma_1}{\mu_1\gamma_2 + \mu_2\gamma_1} = \frac{2}{1 + (\mu_1/\mu_2)(\gamma_2/\gamma_1)}$
XII.63	Διαδιδόμενο κύμα για πρόσπτωση σε μέσο με απώλειες	$\begin{split} \dot{E}_t &= \dot{E}_{0t} e^{-px} e^{-j[qz + (\beta_1 \sin \theta_i)x]} \\ p &= \rho(\alpha_2 \cos \delta - \beta_2 \sin \delta) \\ q &= -\rho(\alpha_2 \sin \delta + \beta_2 \cos \delta) \\ \cos \theta_t &= \rho e^{j\delta} \\ \gamma_2 &= \alpha_2 + j\beta_2 \end{split}$
XII.64	Πραγματική γωνία διάθλασης	$\psi = \arctan\left(-rac{eta_{\mathrm{I}}\sin heta_{i}}{q} ight)$
XII.65	Suntelestig anáklashç gia hlektrikó pedío kábeto sto epípedo prósptusty $\mu_1 = \mu_0, \varepsilon_1 = \varepsilon_0, \sigma_1 = 0, \mu_2 \approx \mu_0, \\ \varepsilon_2 = \varepsilon_r \varepsilon_0, \sigma_2 = \sigma$	$R_{\perp} = \left(\frac{\dot{E}_{0r}}{\dot{E}_{0i}}\right)_{\perp} = \frac{\cos\theta_i - \sqrt{\left(\varepsilon_r - j\frac{\sigma}{\omega\varepsilon_0}\right) - \sin^2\theta_i}}{\cos\theta_i + \sqrt{\left(\varepsilon_r - j\frac{\sigma}{\omega\varepsilon_0}\right) - \sin^2\theta_i}}$ $= \frac{\cos\theta_i - \sqrt{(\varepsilon_r - j60\lambda\sigma) - \sin^2\theta_i}}{\cos\theta_i + \sqrt{(\varepsilon_r - j60\lambda\sigma) - \sin^2\theta_i}}$
X11.66	Suntelestig anáklasts gia hlektrikó pedio parállylo sto epípedo produkti $\mu_1 = \mu_0$, $\varepsilon_1 = \varepsilon_0$, $\sigma_1 = 0$, $\mu_2 \approx \mu_0$, $\varepsilon_2 = \varepsilon_r \varepsilon_0$, $\sigma_2 = \sigma$	$\begin{split} R_{ } &= \left(\frac{\dot{E}_{0r}}{\dot{E}_{0i}}\right)_{ } = \frac{\left(\varepsilon_r - j\frac{\sigma}{\omega\varepsilon_0}\right)\cos\theta_i - \sqrt{\left(\varepsilon_r - j\frac{\sigma}{\omega\varepsilon_0}\right) - \sin^2\theta_i}}{\left(\varepsilon_r - j\frac{\sigma}{\omega\varepsilon_0}\right)\cos\theta_i + \sqrt{\left(\varepsilon_r - j\frac{\sigma}{\omega\varepsilon_0}\right) - \sin^2\theta_i}} \\ &= \frac{\left(\varepsilon_r - j60\lambda\sigma\right)\cos\theta_i - \sqrt{\left(\varepsilon_r - j60\lambda\sigma\right) - \sin^2\theta_i}}{\left(\varepsilon_r - j60\lambda\sigma\right)\cos\theta_i + \sqrt{\left(\varepsilon_r - j60\lambda\sigma\right) - \sin^2\theta_i}} \end{split}$

Ειδική περίπτωση: μέσο 2 πολύ καλός αγωγός		
XII.67	Η πραγματική γωνία διάθλασης και ο συντελεστής ανάκλασης όταν το μέσο 2 είναι τέλειος αγωγός	$\begin{array}{c} \theta_t \to 0 & \psi \to 0 \\ \dot{R} \cong -1 \end{array}$

ΣταΣΙΜΑ ΚΥΜΑΤΑ

X11.68	Συνολικό ηλεκτρικό και μαγνητικό πεδίο	$\begin{split} \mathbf{E}(z,t) &= 2E_{0i} \sin \beta_1 z \sin \omega t \mathbf{x}_0 \\ \mathbf{H}(z,t) &= 2\frac{E_{0i}}{\eta_1} \cos \beta_1 z \cos \omega t \mathbf{y}_0 \end{split}$
XII.69	Μέση ισχύς συνιστάμενου στάσιμου κύματος	$ig \langle {f P} ig angle = {f 0}$

Προσπτώση σε Διηλεκτρική Πλακά (μέσο 2) Πάχους *d* που Περιβάλλεται από Αερά (Μέσα 1 και 3)

XII.70	Λόγος συνολικά ανακλώμενου (μέσο 1) προς προσπίπτον ηλεκτρικό πεδίο (μέσο 1), όπου $Z_{ij} = \eta_i / \eta_j = \mu_i \beta_j / \mu_j \beta_i$	$ \left(\frac{\dot{E}_{_{0r1}}}{\dot{E}_{_{0i1}}}\right) = \frac{\left(1 - Z_{_{12}}\right) \left(1 + Z_{_{23}}\right) + \left(1 + Z_{_{12}}\right) \left(1 - Z_{_{23}}\right) e^{-j2\beta d}}{\left(1 + Z_{_{12}}\right) \left(1 + Z_{_{23}}\right) + \left(1 - Z_{_{12}}\right) \left(1 - Z_{_{23}}\right) e^{-j2\beta d}} $
XII.71	Λόγος συνολικά διαθλώμενου (μέσο 3) προς προσπίπτον ηλεκτρικό πεδίο (μέσο 1), όπου $Z_{ij} = \eta_i / \eta_j = \mu_i \beta_j / \mu_j \beta_i$	$\left(\frac{\dot{E}_{_{0t3}}}{\dot{E}_{_{0i1}}}\right) = \frac{4e^{j\beta_0 d}}{\left(1 - Z_{_{12}}\right) \ \left(1 - Z_{_{23}}\right) \ e^{-j\beta d} + \left(1 + Z_{_{12}}\right) \ \left(1 + Z_{_{23}}\right) \ e^{j\beta d}}$
XII.72	Λόγος συνολικά ανακλώμενου (μέσο 1) προς προσπίπτον ηλεκτρικό πεδίο (μέσο 1) για μέσα με απώλειες, όπου $Z_{ij} = \eta_i / \eta_j = \mu_i \gamma_j / \mu_j \gamma_i$	$ \left(\frac{\dot{E}_{0r1}}{\dot{E}_{0i1}}\right) = \frac{\left(1 - Z_{12}\right) \ \left(1 + Z_{23}\right) + \left(1 + Z_{12}\right) \ \left(1 - Z_{23}\right) \ e^{-2\gamma_2 d}}{\left(1 + Z_{12}\right) \ \left(1 + Z_{23}\right) + \left(1 - Z_{12}\right) \ \left(1 - Z_{23}\right) \ e^{-2\gamma_2 d}} $
XII.73	Λόγος συνολικά διαθλώμενου (μέσο 3) προς προσπίπτον ηλεκτρικό πεδίο (μέσο 1) για μέσα με απώλειες, όπου $Z_{ij} = \eta_i / \eta_j = \mu_i \gamma_j / \mu_j \gamma_i$	$\left(\frac{\dot{E}_{0t3}}{\dot{E}_{0i1}}\right) = \frac{4e^{\gamma_3 d}}{\left(1 - Z_{12}\right) \ \left(1 - Z_{23}\right) \ e^{-\gamma_2 d} + \left(1 + Z_{12}\right) \ \left(1 + Z_{23}\right) \ e^{\gamma_2 d}}$

ΠΙΕΣΗ ΑΚΤΙΝΟΒΟΛΙΑΣ

XII.74	Πυκνότητα της ορμής του ηλεκτρομαγνητικού πεδίου	$\mathbf{g} = \mathbf{D} \times \mathbf{B} = \mu \varepsilon (\mathbf{E} \times \mathbf{H}) = \mu \varepsilon \mathbf{P} = \frac{\mathbf{P}}{v^2}$
XII.75	Πίεση που ασκείται κάθετα στη διαχωριστική επιφάνεια $p = \frac{\cos \theta_i}{v} [< P_{in} > - < P_{m} >]$	\mathbf{n}_{r} $\mathbf{\Delta}S$ $\mathbf{\theta}_{r} = \theta_{i}$ $\mathbf{n}_{0} = \mathbf{z}_{0}$ \mathbf{z} $\mathbf{\Delta}S$ $\mathbf{v}\Delta t$ \mathbf{n}_{i} (1) (2)
ХШ.76	Ειδική περίπτωση όπου το μέσο 1 είναι το κενό (ή αέρας)	$p = \frac{\cos \theta_i}{c} \left[\langle P_{in} \rangle + \langle P_{in} \rangle \right]$ $\dot{\eta}$ $p = \frac{1}{2} \varepsilon_0 \mid E_{0i}^{2} \mid \cos^2 \theta_i (1+\mid R \mid^2) = (1+\mid R \mid^2) \frac{\cos^2 \theta_i}{c} \mid \langle P_i \rangle \mid$
XII.77	Πίεση που ασκείται κάθετα στη διαχωριστική επιφάνεια συναρτήσει της πυκνότητας ενέργειας του πεδίου του προσπίπτοντος κύματος $< w_i >$	$p = (1 + \mid R \mid^2) \cos^2 \theta_i < w_i > = (1 + \mid R \mid^2) \frac{\cos^2 \theta_i}{c} \mid < P_i > \mid$
XII.78	Μέγιστη τιμή της πίεσης ακτινοβολίας για κάθετη πρόσπτωση στην επιφάνεια τέλειου αγωγού ($R=1, \theta_i=0$)	$p_{ ext{max}} = 2 rac{ \langle P_i angle }{c} = 2 \langle w_i angle = arepsilon_0 \mid \dot{E}_{0i} \mid^2$

 $rac{p_{ ext{max}}}{2}$

XII.79	Μέγιστη τιμή της πίεσης ακτινοβολίας για κάθετη πρόσπτωση σε τέλεια απορροφητική επιφάνεια ($R=0, \ \theta_i=0$)	$p_{a} = \frac{ }{c} < w_{i}> = \frac{1}{2} \varepsilon_{0} \mid \dot{E}_{oi} \mid^{2} =$
--------	--	--

Σκελάση Ηλεκτρομαγνητικού Κύματος

XII.80	Διατομή σκέδασης (<i>s</i> : σκεδαζόμενο πεδίο)	$\sigma = 4\pi r^2 \frac{P_s}{P_i}$
--------	---	-------------------------------------

$\label{eq:product} \Gamma PAMME\Sigma \ META \Phi OPA \Sigma$

Εγκαρσία Ηλεκτρομαγνητικά Κύματα (ΤΕΜ)

XIII.1	Οι εξισώσεις στροφής του Maxwell όταν τα διανύσματα βρίσκονται στο εγκάρσιο στη διεύθυνση διάδοσης επίπεδο	$egin{aligned} abla imes \dot{\mathbf{E}}_t &= -j\omega\mu\dot{\mathbf{H}}_t \ abla onumber & \dot{\mathbf{H}}_t &= j\omegaarepsilon\dot{\mathbf{E}}_t \end{aligned}$
XIII.2	Εξισώσεις του Maxwell για διανύ- σματα εγκάρσια στη διεύθυνση διά- δοσης	$\begin{split} \mathbf{z}_{0} \times & \frac{\partial \dot{\mathbf{E}}_{t}}{\partial z} = -j\omega\mu \dot{\mathbf{H}}_{t} \\ \mathbf{z}_{0} \times & \frac{\partial \dot{\mathbf{H}}_{t}}{\partial z} = j\omega\varepsilon \dot{\mathbf{E}}_{t} \\ \nabla_{t} \times & \dot{\mathbf{E}}_{t} = 0 \\ \nabla_{t} \times & \dot{\mathbf{H}}_{t} = 0 \\ \left(\nabla_{t} \equiv \mathbf{x}_{0} \frac{\partial}{\partial x} + \mathbf{y}_{0} \frac{\partial}{\partial y}\right) \end{split}$
XIII.3	Γενικές λύσεις των εξισώσεων στρο- φής ΧΙΙΙ.2 όπου φ, ψ βαθμωτά δυναμικά που ικανοποιούν την εξί- σωση Laplace	$\begin{split} \dot{\mathbf{E}}_{t} &= f_{1}(z) \nabla_{t} \phi(x, y) \\ \dot{\mathbf{H}}_{t} &= f_{2}(z) \nabla_{t} \psi(x, y) \\ \nabla_{t}^{2} \phi &= \frac{\partial^{2} \phi}{\partial x^{2}} + \frac{\partial^{2} \phi}{\partial y^{2}} = 0 \\ \nabla_{t}^{2} \psi &= \frac{\partial^{2} \psi}{\partial x^{2}} + \frac{\partial^{2} \psi}{\partial y^{2}} = 0 \end{split}$
XIII.4	Εξίσωση κύματος για \mathbf{E}_t και \mathbf{H}_t	$\begin{split} \frac{\partial^2 \dot{\mathbf{E}}_t}{\partial z^2} + \beta^2 \dot{\mathbf{E}}_t &= 0\\ \frac{\partial^2 \dot{\mathbf{H}}_t}{\partial z^2} + \beta^2 \dot{\mathbf{H}}_t &= 0\\ \dot{\mathbf{o}} \pi \mathbf{o} \mathbf{v} \ \beta^2 &= \omega^2 \mu \varepsilon \end{split}$
XIII.5	Ταχύτητα διάδοσης του κύματος	$\upsilon_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu\varepsilon}} = f\lambda$
XIII.6	Οι λύσεις για το ηλεκτρικό πεδίο	$\dot{\mathbf{E}}_{\mathbf{t}} = (\dot{E}_{t0}^{\pm}) abla_t \phi(x,y) e^{\mp j eta z}$
XIII.7	Οι λύσεις για το μαγνητικού πεδίο	$\dot{\mathbf{H}}_{t} = \pm \frac{\mathbf{z}_{0} \times \nabla_{t} \phi(x, y) (\dot{E}_{t0}^{\pm}) e^{\mp j \beta z}}{\eta} = \pm \frac{\mathbf{z}_{0} \times \dot{\mathbf{E}}_{t}}{\eta}$
XIII.8	Χαρακτηριστική αντίσταση του μέ- σου	$\eta = \sqrt{\mu/\varepsilon}$
XIII.9	Απλοποιημένες μορφές των ΧΙΙΙ.6 και ΧΙΙΙ.7	$egin{aligned} \dot{\mathbf{E}}_t &= (\dot{E}_{t0}^{\pm}) e^{\pm j eta z} \mathbf{x}_0 \ \dot{\mathbf{H}}_t &= \pm rac{(\dot{E}_{t0}^{\pm}) e^{\mp j eta z}}{\eta} \mathbf{y}_0 \end{aligned}$

Ιδανική Γραμμή Δυο Αγωγών

XIII.10	Τάση γραμμής (για διάδοση κατά τη θετική διεύθυνση του άζονα z)	$\dot{V}=V_{_{0}}e^{-jeta z}$
XIII.11	Ένταση ρεύματος γραμμής (για διά- δοση κατά τη θετική διεύθυνση του άξονα z) – (Q είναι το ανά μονάδα μήκους της γραμμής φορτίο του αγω- γού)	$\dot{I} = I_0 e^{-j \beta z},$ όπου $I_0 = rac{Q}{\varepsilon \eta}$
XIII.12	Ανά μονάδα μήκους χωρητικότητα της γραμμής	$C = \frac{Q}{V_0}$
XIII.13	Χαρακτηριστική σύνθετη αντίσταση της γραμμής μεταφοράς	$Z_0 = \frac{V_0}{I_0} = \frac{\varepsilon}{C} \eta = \frac{\sqrt{\mu\varepsilon}}{C} = \frac{1}{Cv_p} = \sqrt{\frac{L}{C}}$
XIII.14	Ταχύτητα διάδοσης συναρτήσει χω- ρητικότητας C και αυτεπαγωγής L γραμμής μεταφοράς	$\upsilon_{p} = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{1}{\sqrt{LC}}, \ \sqrt{LC} = \sqrt{\mu\varepsilon} = \frac{1}{\upsilon_{p}}$
XIII.15	Μέση χρονική ισχύς που μεταφέρει μια ιδανική γραμμή μεταφοράς	$\langle P angle = rac{1}{2} rac{V_0^2}{Z_0} = rac{1}{2} Z_0 I_0^2 = rac{1}{2} V_0 I_0$
XIII.16	Χαρακτηριστική αντίσταση ομοαξο- νικής γραμμής (b εξωτερική, a εσω- τερική ακτίνα)	$Z_0 = \sqrt{\frac{L}{C}} = \frac{\ln(b/a)}{2\pi} \sqrt{\frac{\mu}{\varepsilon}}$

Κύκλωματική Ανάλυση Γραμμής Μεταφοράς

XIII.17	Τηλεγραφική εξίσωση ή εξίσωση της γραμμής μεταφοράς	$\frac{\partial^2 V}{\partial z^2} = LC \frac{\partial^2 V}{\partial t^2} + (RC + LG) \frac{\partial V}{\partial t} + RGV$ $\frac{\partial^2 I}{\partial z^2} = LC \frac{\partial^2 I}{\partial t^2} + (RC + LG) \frac{\partial I}{\partial t} + RGI$
XIII.18	Τηλεγραφική εξίσωση ή εξίσωση της γραμμής μεταφοράς για <i>γραμμή χω-</i> <i>ρίς απώλειες</i>	$\frac{\partial^2 V}{\partial z^2} - LC \frac{\partial^2 V}{\partial t^2} = 0$ $\frac{\partial^2 I}{\partial z^2} - LC \frac{\partial^2 I}{\partial t^2} = 0$
XIII.19	Ταχύτητα διάδοσης του κύματος κα- τά μήκος γραμμής χωρίς απώλειες	$v = \frac{1}{\sqrt{LC}}$
XIII.20	Σύνθετη χαρακτηριστική αντίσταση σε γραμμή χωρίς απώλειες	$Z_{0} = \frac{V^{+}(z,t)}{I^{+}(z,t)} = -\frac{V^{-}(z,t)}{I^{-}(z,t)} = \sqrt{\frac{L}{C}}$

Εξιέωσεις της Γραμμής Μεταφοράς στην Ημιτονοείαη Μονιμή Κατάσταση

XIII.21	Εφαρμογή των νόμων του Kirchhoff στη γραμμή μεταφοράς	$-\frac{d\dot{V}}{dz} = (R+j\omega L)\dot{I} , -\frac{d\dot{I}}{dz} = (G+j\omega C)\dot{V}$
XIII.22	Τηλεγραφική εξίσωση ή εξίσωση της γραμμής μεταφοράς για την τάση	$\frac{d^2 \dot{V}}{dz^2} = (R + j\omega L)(G + j\omega C)\dot{V}$ $\frac{d^2 \dot{V}}{dz^2} - \gamma^2 \dot{V} = 0$
XIII.23	Τηλεγραφική εξίσωση ή εξίσωση της γραμμής μεταφοράς για την ένταση του ρεύματος	$\frac{d^2 \dot{I}}{dz^2} = (R + j\omega L)(G + j\omega C)\dot{I}$ $\frac{d^2 \dot{I}}{dz^2} - \gamma^2 \dot{I} = 0$
XIII.24	Σταθερά διάδοσης της γραμμής	$\gamma = \sqrt{(R + j\omega L)(G + j\omega C)} = \alpha + j\beta$
XIII.25	Γενική λύση για την τάση στη γραμμή μεταφοράς	$\dot{V}(z)=\dot{V}^+e^{-\gamma z}+\dot{V}^-e^{\gamma z}$
XIII.26	Γενική λύση για την ένταση του ρεύματος στη γραμμή μεταφοράς	$\dot{I}(z) = rac{1}{Z_0} (\dot{V}^+ e^{-\gamma z} - \dot{V}^- e^{\gamma z})$
XIII.27	Σχέσεις μεταξύ των πλατών	$\dot{I}^{+}=rac{\dot{V}^{+}}{Z_{_{0}}},\;\dot{I}^{-}=-rac{\dot{V}^{-}}{Z_{_{0}}}$
XIII.28	Χαρακτηριστική σύνθετη αντίστα- ση της γραμμής	$Z_{0} = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$
XIII.29	Στιγμιαία τιμή της τάσης σε κάθε θέση της γραμμής	$V(z,t) = \operatorname{Re}(\dot{V}(z)e^{j\omega t}) =$ = $V^+e^{-az}\cos(\omega t - \beta z + \phi_i) + V^-e^{az}\cos(\omega t + \beta z + \phi_r)$
XIII.30	Στιγμιαία τιμή της έντασης σε κάθε θέση της γραμμής	$\begin{split} I(z,t) &= \operatorname{Re}(\dot{I}(z)e^{j\omega t}) = \\ &= \frac{1}{ Z_0 } \left[V^+ e^{-az} \cos(\omega t - \beta z + \phi_i - \phi_z) - V^- e^{az} \cos(\omega t + \beta z + \phi_r - \phi_z) \right] \end{split}$
XIII.31	Μήκος κύματος του διαδιδόμενου κύματος	$\lambda = \upsilon_p T = \frac{\upsilon_p}{f} = \frac{2\pi}{\beta}$
XIII.32	Σύνθετη αντίσταση της γραμμής	$Z(z) = Z_{_0} rac{\dot{V}^+ e^{-\gamma z} + \dot{V}^- e^{\gamma z}}{\dot{V}^+ e^{-\gamma z} - \dot{V}^- e^{\gamma z}}$

Ανακλάση σε Γραμμή Μεταφοράς

XIII.33	Συνολική τάση και ένταση στη θέση	XIII.25 $\stackrel{(z=0)}{\Rightarrow}$ $\dot{V}_L = \dot{V}^+ + \dot{V}^-$
	του φορτίου	XIII.26 \Rightarrow $I_L = \frac{1}{Z_0} (V^+ - V^-)$
XIII.34	Γενικές σχέσεις τάσης, ρεύματος και αντίστασης σε γραμμή μεταφοράς με μεταβλητή s = -z την απόσταση	$\dot{V}(s) = \dot{V}^+ e^{\gamma s} + \dot{V}^- e^{-\gamma s}$ $\dot{I}(s) = rac{1}{Z_0} (\dot{V}^+ e^{\gamma s} - \dot{V}^- e^{-\gamma s})$
	από το φορτίο	$Z(s)=Z_{_0}rac{\dot{V}^+e^{\gamma s}+\dot{V}^-e^{-\gamma s}}{\dot{V}^+e^{\gamma s}-\dot{V}^-e^{-\gamma s}}$
XIII.35	Συντελεστής ανάκλασης στο πέρας της γραμμής	$\Gamma_{_{0}}=\frac{\dot{V}^{^{-}}}{\dot{V}^{^{+}}}=\mid\Gamma_{_{0}}\mid e^{j\varphi_{_{0}}}=\frac{Z_{_{L}}-Z_{_{0}}}{Z_{_{L}}+Z_{_{0}}}$
XIII.36	Αντίσταση εισόδου	$Z(s) = Z_0 \frac{e^{\gamma s} + \Gamma_0 e^{-\gamma s}}{e^{\gamma s} - \Gamma_0 e^{-\gamma s}} = Z_0 \frac{1 + \Gamma_0 e^{-2\gamma s}}{1 - \Gamma_0 e^{-2\gamma s}} = Z_0 \frac{Z_L + Z_0 \tanh \gamma s}{Z_0 + Z_L \tanh \gamma s}$
XIII.37	Γενικές εξισώσεις τάσης και ρεύμα- τος σε γραμμή μεταφοράς ως συνάρ- τηση της απόστασης s από το φορ- τίο	$\dot{V}(s) = \dot{V}_L \cosh \gamma s + Z_0 \dot{I}_L \sinh \gamma s$ $\dot{I}(s) = rac{\dot{V}_L}{Z_0} \sinh \gamma s + \dot{I}_L \cosh \gamma s$

$\mathbf{\Pi}$ ερίπτωση ανοιχτής γραμμής ($Z_{\scriptscriptstyle L} = \infty$)		
XIII.38	Πλάτη τάσης και ρεύματος	$\begin{split} \dot{V}^+ &= \dot{V}^- = \frac{\dot{V}_L}{2} \\ \dot{I}^+ &= -\dot{I}^- = \frac{\dot{V}_L}{2Z_0} \\ \dot{I}_L &= 0 \end{split}$
XIII.39	Σύνθετη αντίσταση εισόδου και συ- ντελεστής ανάκλασης	$Z_a(s) = \frac{Z_0}{\tanh \gamma s} = Z_0 \frac{1 + j \tanh as \tan \beta s}{\tanh as + j \tan \beta s}$ $\Gamma_0 = 1$

	Περίπτωση βραχυκυκλωμένης γραμμής ($Z_L = 0$)		
XIII.40	Πλάτη τάσης και ρεύματος	$\dot{V}^-=-\dot{V}^+$ $\dot{V}_L=0$ $\dot{I}^+=\dot{I}^-=rac{\dot{I}_L}{2}$	
XIII.41	Σύνθετη αντίσταση εισόδου και συ- ντελεστής ανάκλασης	$egin{array}{ll} Z_{eta}(s) = Z_0 anh \gamma s \ \Gamma_0 = -1 \end{array}$	

	Περίπτωση προσαρμοσμένης γραμμής ($Z_{\scriptscriptstyle L}=Z_{\scriptscriptstyle 0}$)		
XIII.42	Πλάτη τάσης και ρεύματος	$\dot{V}^- = 0$ $\dot{V}^+ = \dot{V}_L$ $\dot{I}^- = 0$ $\dot{I}^+ = \dot{I}_L$	
XIII.43	Σύνθετη αντίσταση εισόδου και συ- ντελεστής ανάκλασης	$egin{array}{ll} Z_{\pi}(s) = Z_{_0} \ \Gamma_{_0} = 0 \end{array}$	

Γραμμη Μεταφοράς Χωρίς Παραμορφώση

XIII.44	Συνθήκη Heaviside για γραμμή χωρίς παραμόρφωση	$\frac{L}{R} = \frac{C}{G}$
XIII.45	Σύνθετη αντίσταση γραμμής	$Z_{_0}=\sqrt{rac{L}{C}}=\sqrt{rac{R}{G}}$
XIII.46	Σταθερά διάδοσης	$\gamma = \sqrt{RG} + j\omega\sqrt{LC} = \alpha + j\beta$
XIII.47	Φασική ταχύτητα	$\upsilon_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$
XIII.48	Συνθήκες για γραμμή με χαμηλές απώ- λειες	$\omega L \gg R$, $\omega C \gg G$
XIII.49	Σύνθετη αντίσταση σε γραμμή με χα- μηλές απώλειες	$Z_{\scriptscriptstyle 0} = \sqrt{\frac{R+j\omega L}{G+j\omega C}} \cong \sqrt{\frac{L}{C}}$
XIII.50	Συντελεστής απόσβεσης σε γραμμή με χαμηλές απώλειες	$\alpha \cong \frac{R}{2}\sqrt{\frac{C}{L}} + \frac{G}{2}\sqrt{\frac{L}{C}}$
XIII.51	Φασική σταθερά διάδοσης σε γραμμή με χαμηλές απώλειες	$\beta = \omega \sqrt{LC}$
XIII.52	Φασική ταχύτητα σε γραμμή με χαμη- λές απώλειες	$v_p \cong rac{1}{\sqrt{LC}}$

Κγκλωματική Ανάλγση Ιδανικής Γραμμής

XIII.53	Εξισώσεις Kirchhoff στην ημιτονοειδή μόνιμη κατάσταση για γραμμή χωρίς απώλειες	$-\frac{d\dot{V}}{dz} = j\omega L\dot{I}$ $-\frac{d\dot{I}}{dz} = j\omega C\dot{V}$
XIII.54	Εξισώσεις για γραμμή χωρίς απώλειες	$\frac{d^2 \dot{V}}{dz^2} + \omega^2 L C \dot{V} = 0$ $\frac{d^2 \dot{I}}{dz^2} + \omega^2 L C \dot{I} = 0$
XIII.55	Σταθερά διάδοσης και χαρακτηριστική σύνθετη αντίσταση σε γραμμή χωρίς απώλειες	$\gamma = j\beta = j\omega\sqrt{LC}$ $a = 0$ $Z_0 = \sqrt{L/C}$
XIII.56	Γενικές λύσεις για την τάση και το ρεύ- μα στη γραμμή (μιγαδικές μορφές)	$egin{aligned} \dot{V}(z) &= \dot{V}^+ e^{-jeta z} + \dot{V}^- e^{jeta z} \ \dot{I}(z) &= rac{1}{Z_0} (\dot{V}^+ e^{-jeta z} - \dot{V}^- e^{jeta z}) \end{aligned}$
XIII.57	Γενικές λύσεις για την τάση και το ρεύ- μα στη γραμμή (στιγμιαίες τιμές)	$\begin{split} V(z,t) &= V^+ \cos(\omega t - \beta z + \varphi_i) + V^- \cos(\omega t + \beta z + \varphi_r) \\ I(z,t) &= \frac{1}{Z_0} (V^+ \cos(\omega t - \beta z + \phi_i) - V^- \cos(\omega t + \beta z + \phi_r)) \end{split}$
XIII.58	Φασική ταχύτητα, μήκος κύματος σε γραμμή χωρίς απώλειες	$\upsilon_p = \frac{1}{\sqrt{LC}}, \lambda = \frac{1}{f\sqrt{LC}}$
XIII.59	Τάση και ρεύμα στο φορτίο γραμμής χωρίς απώλειες	$\dot{V}_{L} = \dot{V}^{+} + \dot{V}^{-}, I_{L} = \frac{1}{Z_{0}}(\dot{V}^{+} - \dot{V}^{-})$
XIII.60	Γενικές σχέσεις τάσης σε γραμμή μετα- φοράς με μεταβλητή $s = -z$ την απόσταση από το φορτίο (<i>ιδανική</i>	$\begin{split} \dot{V}(s) &= \dot{V}_L \cos\beta s + jZ_0 \dot{I}_L \sin\beta s \\ \dot{V}(s) &= \dot{V}^+ e^{j\beta s} (1 + \Gamma_0 e^{-j2\beta s}) = \dot{V}^+ e^{j\beta s} (1 + \Gamma_0 e^{j(\varphi_0 - 2\beta s)}) \end{split}$
XIII.61	γραμμη) Γενικές σχέσεις ρεύματος σε γραμμή μεταφοράς με μεταβλητή $s = -z$ την απόσταση από το φορτίο (<i>ιδανική γραμ</i> - μή)	$\begin{split} \dot{I}(s) &= j \frac{\dot{V}_L}{Z_0} \sin \beta s + \dot{I}_L \cos \beta s \\ \dot{I}(s) &= \frac{\dot{V}^+}{Z_0} e^{j\beta s} (1 - \Gamma_0 e^{-j2\beta s}) = \frac{\dot{V}^+}{Z_0} e^{j\beta s} \left[1 - \Gamma_0 e^{j(\varphi_0 - 2\beta s)} \right] \end{split}$
XIII.62	Σύνθετη αντίσταση εισόδου ιδανικής γραμμής	$Z(s) = Z_0 rac{\dot{V}^+ e^{jeta s} + \dot{V}^- e^{-jeta s}}{\dot{V}^+ e^{jeta s} - \dot{V}^- e^{-jeta s}} = Z_0 rac{Z_L + jZ_0 aneta s}{Z_0 + jZ_L aneta s}$
XIII.63	Συντελεστής ανάκλασης ιδανικής γραμ- μής	$\Gamma_{\scriptscriptstyle 0} = \frac{Z_{\scriptscriptstyle L} - Z_{\scriptscriptstyle 0}}{Z_{\scriptscriptstyle L} + Z_{\scriptscriptstyle 0}} = \mid \Gamma_{\scriptscriptstyle 0} \mid e^{_{j\varphi_{\scriptscriptstyle 0}}}$
XIII.64	Σύνθετη αντίσταση φορτίου συναρτήσει της χαρακτηριστικής σύνθετης αντίστα- σης της γραμμής και του συντελεστή ανάκλασης στο φορτίο	$Z_{\scriptscriptstyle L} = Z_{\scriptscriptstyle 0} rac{1+\Gamma_{\scriptscriptstyle 0}}{1-\Gamma_{\scriptscriptstyle 0}}$
XIII.65	Σύνθετη αντίσταση σε τυχαία θέση γραμμής συναρτήσει της χαρακτηριστι- κής σύνθετης αντίστασης της γραμμής και του συντελεστή ανάκλασης στο φορ- τίο	$Z(s)=Z_0\frac{1+\Gamma_0 e^{-j2\beta s}}{1-\Gamma_0 e^{-j2\beta s}}$

XIII.66	Σύνθετη αντίσταση σε τυχαία θέση γραμμής για την περίπτωση ανοιχτής γραμμής	$Z_a(s) = -j rac{Z_0}{ an eta s}$
XIII.67	Σύνθετη αντίσταση σε τυχαία θέση γραμμής για την περίπτωση βραχυκυ- κλωμένης γραμμής	$Z_{_eta}(s)=jZ_{_0} aneta s$
XIII.68	Σύνθετη αντίσταση σε τυχαία θέση γραμμής για την περίπτωση προσαρμο- σμένης γραμμής	$Z_{\pi}(s) = Z_0 = \sqrt{\frac{L}{C}}$
XIII.69	Μέγιστη τιμή τάσης κατά μήκος της γραμμής μεταφοράς	$\mid\!\dot{V}(s)\mid_{ ext{max}}=\mid\!\dot{V}^{+}\mid(1\!+\mid\Gamma_{0}\mid)$
XIII.70	Ελάχιστη τιμή τάσης κατά μήκος της γραμμής μεταφοράς	$ert \dot{V}(s) ert_{\min} = ert \dot{V}^+ ert (1 - ert \Gamma_0 ert)$
XIII.71	Μέγιστη τιμή ρεύματος κατά μήκος της γραμμής μεταφοράς	$\mid \dot{I}(s) \mid_{\max} = \frac{\mid \dot{V}^{+} \mid}{Z_{0}} (1 + \mid \Gamma_{0} \mid)$
XIII.72	Ελάχιστη τιμή ρεύματος κατά μήκος της γραμμής μεταφοράς	$\mid \dot{I}(s) \mid_{\min} = \frac{\mid \dot{V}^{+} \mid}{Z_{0}} (1 - \mid \Gamma_{0} \mid)$
XIII.73	Λόγος τάσεων στάσιμου κύματος σε γραμμή μεταφοράς	$S = \frac{ \dot{V}(s) _{\max}}{ \dot{V}(s) _{\min}} = \frac{ \dot{I}(s) _{\max}}{ \dot{I}(s) _{\min}} = \frac{1 + \Gamma_0 }{1 - \Gamma_0 }$
XIII.74	Μέγιστη τιμή αντίστασης εισόδου σε γραμμή μεταφοράς	$Z_{\max} = \frac{ \dot{V}(s) _{\max}}{ \dot{I}(s) _{\min}} = Z_0 \frac{1+ \Gamma_0 }{1- \Gamma_0 } = SZ_0$
XIII.75	Ελάχιστη τιμή αντίστασης εισόδου σε γραμμή μεταφοράς	$Z_{\min} = \frac{\mid \dot{V}(s) \mid_{\min}}{\mid \dot{I}(s) \mid_{\max}} = Z_0 \frac{1 - \mid \Gamma_0 \mid}{1 + \mid \Gamma_0 \mid} = \frac{Z_0}{S}$
XIII.76	Σύνθετη αντίσταση φορτίου συναρτήσει του λόγου στασίμου κύματος (d : από- σταση πλησιέστερου ελαχίστου $ \dot{V} _{min}$ από το φορτίο)	$Z_{L} = Z_{0} \frac{1 - jS \tan\beta d}{S - j \tan\beta d}$
XIII.77	Σύνθετη αντίσταση εισόδου βραχυκυ- κλωμένης γραμμής μήκους λ/8	$Z_{eta}iggl({\lambda\over 8}iggr)=jZ_{0}$
XIII.78	Σύνθετη αντίσταση εισόδου βραχυκυ- κλωμένης γραμμής μήκους λ/4	$Z_{eta}igg(rac{\lambda}{4}igg)=j\infty$
XIII.79	Σύνθετη αντίσταση εισόδου βραχυκυ- κλωμένης γραμμής μήκους 3λ/8	$Z_{\beta}\left(\frac{3\lambda}{8}\right) = -jZ_{0}$
XIII.80	Σύνθετη αντίσταση εισόδου βραχυκυ- κλωμένης γραμμής μήκους λ/2	$Z_{eta}\left(rac{\lambda}{2} ight)=0$

XIII.81	Σύνθετη αντίσταση εισόδου όταν $s = \kappa \lambda/2$, $\kappa = 1, 2,$ (άρτιο πολλα- πλάσιο του τετάρτου μήκους κύματος)	$Z_{in}(s) = Z_L$
XIII.82	Σύνθετη αντίσταση εισόδου όταν $s = (2\kappa - 1)\lambda/4$, $\kappa = 1, 2,$ (περιττό πολλαπλάσιο του τετάρτου μήκους κύματος)	$Z_{in}(s)=rac{Z_0^2}{Z_L}$
XIII.83	Μεταφερόμενη ισχύς σε ιδανική γραμμή μεταφοράς	$\begin{split} \left\langle P \right\rangle &= \frac{1}{2} \frac{ \dot{V}^{+} ^{2}}{Z_{0}} (1 - \Gamma_{0} ^{2}) = \frac{1}{2} \frac{ \dot{V}^{+} ^{2}}{Z_{0}} - \frac{1}{2} \frac{ \dot{V}^{-} ^{2}}{Z_{0}} \\ \left\langle P \right\rangle &= \left\langle P_{L} \right\rangle = \left\langle P_{i} \right\rangle - \left\langle P_{r} \right\rangle = \frac{1}{2} \frac{ \dot{V}^{+} ^{2}}{Z_{0}} - \frac{1}{2} \frac{ \dot{V}^{+} ^{2} \Gamma_{0} ^{2}}{Z_{0}} \end{split}$
XIII.84	Μέγιστη ισχύς που μπορεί να προσδοθεί στο φορτίο από ιδανική γραμμή μεταφο- ράς	$\left\langle P ight angle_{ m max} = rac{1}{2} rac{\mid \dot{V}^+ \mid^2}{Z_0}$

ΔΙΑΓΡΑΜΜΑ SMITH

XIII.85	Γενικευμένος συντελεστής ανάκλασης	$\Gamma = \Gamma_0 e^{-j2\beta s} = \mid \Gamma_0 \mid e^{j(\varphi_0 - 2\beta s)} = \mid \Gamma_0 \mid e^{j\psi} = p + jq$
XIII.86	Αντίσταση εισόδου σε κάθε θέση της γραμμής	$Z=Z_{0}rac{1+\Gamma}{1-\Gamma}$
XIII.87	Ανηγμένη σύνθετη αντίσταση	$z(s) = \frac{Z(s)}{Z_0} = \frac{R(s) + jX(s)}{Z_0} = r(s) + jx(s)$ $z(s) = \frac{1+\Gamma}{1-\Gamma}$
XIII.88	Σύνθετη αγωγιμότητα εισόδου της γραμμής	$Y(s) = \frac{1}{Z(s)} = G + jB$
XIII.89	Ανηγμένη σύνθετη αγωγιμότητα	$y(s) = \frac{1}{z(s)} = g + jb$
XIII.90	Χαρακτηριστική σύνθετη αγωγιμότητα	$Y_{_0}=\frac{1}{Z_{_0}}$
XIII.91	Ανηγμένη χαρακτηριστική σύνθετη αγωγιμότητα	$y_0 = \frac{1-\Gamma}{1+\Gamma}$
XIII.92	Ανηγμένη αντίσταση στις θέσεις όπου $ \dot{V}(s) \models \dot{V}(s) _{max}$	$z=z_{ m max}=r=S$
XIII.93	Στις θέσεις όπου $ \dot{V}(s) \models \dot{V}(s) _{\min}$	$z=z_{\rm min}=r=\frac{1}{S}$

XIII.94	Γραμμή με απώλειες	$z(s) = \frac{Z(s)}{Z_0} = \frac{1 + \Gamma_0 e^{-2\gamma s}}{1 - \Gamma_0 e^{-2\gamma s}} = \frac{1 + \Gamma}{1 - \Gamma}$
XIII.95	Γενικευμένος συντελεστής ανάκλασης	$\Gamma = \Gamma_0 e^{-2\gamma s} = \Gamma_0 e^{-j2\beta s} = \mid \Gamma_0 \mid e^{-2\alpha s} e^{j(\psi - 2\beta s)}$

ΚΥΜΑΤΟΔΗΓΟΙ

Διάδοση σε Ενά Συστημά Δυο Παραλλήλων Αγωγιμών Επιπελών

(τα επίπεδα βρίσκονται στις θέσεις y=0 και y=b και εκτείνονται κατά τον άζονα x στο άπειρο και κατά τον z από 0 μέχρι l)

XIV.1	Κυματικές εξισώσεις	$\nabla^{2}\dot{\mathbf{E}} + \omega^{2}\mu\varepsilon\dot{\mathbf{E}} = 0 \Rightarrow \frac{\partial^{2}\dot{\mathbf{E}}}{\partial y^{2}} + \frac{\partial^{2}\dot{\mathbf{E}}}{\partial z^{2}} + \omega^{2}\mu\varepsilon\dot{\mathbf{E}} = 0$ $\nabla^{2}\dot{\mathbf{H}} + \omega^{2}\mu\varepsilon\dot{\mathbf{H}} = 0 \Rightarrow \frac{\partial^{2}\dot{\mathbf{H}}}{\partial y^{2}} + \frac{\partial^{2}\dot{\mathbf{H}}}{\partial z^{2}} + \omega^{2}\mu\varepsilon\dot{\mathbf{H}} = 0$
XIV.2	Σταθερά διάδοσης γ	$\gamma^2 - q^2 + \omega^2 \mu \varepsilon = \gamma^2 - q^2 + k^2 = 0$
XIV.3	Γενική μορφή z -συνιστωσών ηλεκτρικής και μαγνητικής πεδιακής έντασης	$\begin{split} \dot{H}_z &= (A_1 \cos qy + A_2 \sin qy)(B_1 e^{-\gamma z} + B_2 e^{\gamma z}) \\ \dot{E}_z &= (C_1 \cos qy + C_2 \sin qy)(D_1 e^{-\gamma z} + D_2 e^{\gamma z}) \end{split}$
XIV.4	Γενική μορφή E_x συνιστώσας της ηλεκτρικής πεδιακής έντασης	$\begin{split} \dot{E}_x &= \frac{-j\omega\mu}{\gamma^2 + \omega^2\mu\varepsilon} \frac{\partial \dot{H}_z}{\partial y} \Rightarrow \\ \Rightarrow \dot{E}_x &= \frac{j\omega\mu}{q} (A_1 \sin qy - A_2 \cos qy) (B_1 e^{-\gamma z} + B_2 e^{\gamma z}) \end{split}$
XIV.5	Γενική μορφή E_y συνιστώσας της ηλεκτρικής πεδιακής έντασης	$\begin{split} \dot{E}_y &= \frac{1}{\gamma^2 + \omega^2 \mu \varepsilon} \frac{\partial^2 \dot{E}_z}{\partial z \partial y} \Rightarrow \\ \Rightarrow \dot{E}_y &= \frac{\gamma}{q} (C_1 \sin qy - C_2 \cos qy) (D_1 e^{-\gamma z} - D_2 e^{\gamma z}) \end{split}$
XIV.6	Γενική μορφή H_x συνιστώσας της μαγνητικής πεδιακής έντασης	$\begin{split} \dot{H}_x &= \frac{j\omega\varepsilon}{\gamma^2 + \omega^2 \mu\varepsilon} \frac{\partial \dot{E}_z}{\partial y} \Rightarrow \\ \Rightarrow \dot{H}_x &= -\frac{j\omega\varepsilon}{q} (C_1 \sin qy - C_2 \cos qy) (D_1 e^{-\gamma z} + D_2 e^{\gamma z}) \end{split}$
XIV.7	Γενική μορφή H_y συνιστώσας της μαγνητικής πεδιακής έντασης	$\begin{split} \dot{H}_{y} &= \frac{1}{\gamma^{2} + \omega^{2} \mu \varepsilon} \frac{\partial^{2} \dot{H}_{z}}{\partial z \partial y} \Rightarrow \\ \Rightarrow \dot{H}_{y} &= \frac{\gamma}{q} (A_{1} \sin qy - A_{2} \cos qy) (B_{1} e^{-\gamma z} - B_{2} e^{\gamma z}) \end{split}$
XIV.8	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης στην περίπτωση διάδοσης εγκάρσιου ηλεκτρομαγνητικού κύματος (TEM)	$\begin{split} \dot{H}_z &= 0\\ \dot{E}_z &= 0\\ \dot{H}_x &= F_1 e^{-\gamma z} + F_2 e^{\gamma z}\\ \dot{E}_y &= -\frac{\gamma}{j\omega\varepsilon} (F_1 e^{-\gamma z} - F_2 e^{\gamma z}) = -\eta (F_1 e^{-\gamma z} - F_2 e^{\gamma z})\\ \dot{H}_y &= G_1 e^{-\gamma z} + G_2 e^{\gamma z} = 0\\ \dot{E}_x &= \frac{\gamma}{j\omega\varepsilon} (G_1 e^{-\gamma z} - G_2 e^{\gamma z}) = 0 \end{split}$
XIV.9	Οριακές συνθήκες στις αγώγιμες πλάκες	$ \begin{split} \dot{E}_x \Big _{y=0} &= \dot{E}_x \Big _{y=b} = 0 \\ \dot{E}_z \Big _{y=0} &= \dot{E}_z \Big _{y=b} = 0 \end{split} \Rightarrow \begin{cases} A_2 &= C_1 = 0 \\ q = q_n = \frac{n\pi}{b} (n = 1, 2, 3, \ldots) \end{cases} $
XIV.10	Εγκάρσιοι ηλεκτρικοί ρυθμοί (<i>TE</i>)	$\begin{split} \dot{E}_{x} &= \sum_{n=1}^{\infty} \frac{j\omega\mu}{q_{n}} A_{1n} \sin q_{n} y (B_{1n} e^{-\gamma z} + B_{2n} e^{\gamma z}) \\ \dot{H}_{z} &= \sum_{n=1}^{\infty} A_{1n} \cos q_{n} y (B_{1n} e^{-\gamma z} + B_{2n} e^{\gamma z}) \\ \dot{H}_{y} &= \sum_{n=1}^{\infty} \frac{\gamma_{n}}{q_{n}} A_{1n} \sin q_{n} y (B_{1n} e^{-\gamma z} - B_{2n} e^{\gamma z}) \end{split}$
--------	---	--
XIV.11	Εγκάρσιοι μαγνητικοί ρυθμοί (<i>TM</i>)	$\begin{split} \dot{E}_{y} &= \sum_{n=1}^{\infty} -\frac{\gamma_{n}}{q_{n}} C_{2n} \cos q_{n} y (D_{1n} e^{-\gamma z} - D_{2n} e^{\gamma z}) \\ \dot{E}_{z} &= \sum_{n=1}^{\infty} C_{2n} \sin q_{n} y (D_{1n} e^{-\gamma z} + D_{2n} e^{\gamma z}) \\ \dot{H}_{x} &= \sum_{n=1}^{\infty} \frac{j\omega\varepsilon}{q_{n}} C_{2n} \cos q_{n} y (D_{1n} e^{-\gamma z} - D_{2n} e^{\gamma z}) \end{split}$

Εγκάρσιο ηλεκτρικό πεδίο – Ρυθμοί TE ($\dot{E}_z=0$)		
XIV.12	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης, όπου $q_n = \frac{n\pi}{b}, (n = 1, 2, 3,)$	$egin{aligned} \dot{E}_{zn} &= \dot{E}_{yn} = \dot{H}_{xn} = 0 \ \dot{E}_{xn} &= rac{j\omega\mu}{q_n} H_o \sin q_n y e^{-jeta_n z} \ \dot{H}_{yn} &= rac{jeta_n}{q_n} H_o \sin q_n y e^{-jeta_n z} \ \dot{H}_{zn} &= \dot{H}_o \cos q_n y e^{-jeta_n z} \end{aligned}$
XIV.13	Φασική σταθερά διάδοσης	$eta_n = \sqrt{\omega^2 \mu \varepsilon - (n \pi / b)^2} = \omega \sqrt{\mu \varepsilon} \sqrt{1 - (f_c / f)^2}$

Εγκάρσιο μαγνητικό πεδίο. Ρυθμοί \emph{TM} ($\dot{H}_z=0$)		
XIV.14	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης , όπου $q_n = \frac{n\pi}{b}$, $(n = 1, 2, 3,)$	$egin{aligned} \dot{H}_{zn} &= \dot{E}_{zn} = \dot{H}_{yn} = 0 \ \dot{E}_{zn} &= E_o \sin q_n y e^{-jeta_n z} \ \dot{E}_{yn} &= -rac{jeta_n}{q_n} E_o \cos q_n y e^{-jeta_n z} \ \dot{H}_{xn} &= rac{j\omegaarepsilon}{q_n} E_o \cos q_n y e^{-jeta_n z} \end{aligned}$
XIV.15	Φασική σταθερά διάδοσης	$\beta_{n} = \sqrt{\omega^{2} \mu \varepsilon - (n \pi / b)^{2}} = \omega \sqrt{\mu \varepsilon} \sqrt{1 - (f_{c} / f)^{2}}$

Χαρακτηριστικά διάδοσης		
XIV.16	Σταθερά διάδοσης του <i>n</i> -στού ρυθμού	$\gamma_n = \sqrt{(n\pi/b)^2 - \omega^2 \mu \varepsilon}$
XIV.17	Συνθήκη για διάδοση του κύματος	$\omega^2 \mu \varepsilon > \left(\frac{n\pi}{b}\right)^2 \implies \gamma_n = j\beta_n = j\sqrt{\omega^2 \mu \varepsilon - (n\pi/b)^2}$

XIV.18	Συχνότητα αποκοπής του <i>n-</i> στού ρυθμού	$f_c = rac{n}{2b\sqrt{\muarepsilon}}$
XIV.19	Ταχύτητα διάδοσης επίπεδου κύματος στο μεταξύ των πλακών διηλεκτρικό μέσο	$\upsilon_o=rac{1}{\sqrt{\muarepsilon}}$
XIV.20	Μήκος κύματος που αντιστοιχεί στην ταχύτητα v	$\lambda = \frac{v_o}{f} = \frac{2\pi}{\omega\sqrt{\mu\varepsilon}}$
XIV.21	Μήκος επίπεδου κύματος που αντιστοιχεί στη συχνότητα αποκοπής f _c	$\lambda_c = rac{v_o}{f_c} = rac{1}{f_c \sqrt{\mu arepsilon}} = rac{2\pi}{\omega_c \sqrt{\mu arepsilon}} = rac{f}{f_c} \lambda$
XIV.22	Σταθερά διάδοσης συναρτήσει της συχνότητας αποκοπής και του μήκους κύματος αποκοπής	$egin{aligned} &\gamma_n = j eta_n = j \omega \sqrt{\mu arepsilon} \sqrt{1 - \left(f_c / f ight)^2} = \ &= j rac{2\pi}{\lambda} \sqrt{1 - \left(f_c / f ight)^2} = j rac{2\pi}{\lambda} \sqrt{1 - \left(\lambda / \lambda_c ight)^2} \end{aligned}$
XIV.23	Μήκος κύματος κυματοδηγού	$egin{aligned} \lambda_g &= rac{2\pi}{eta_n} = rac{2\pi}{\sqrt{\omega^2 \mu arepsilon - (n\pi / b)^2}} = \ &= rac{\lambda}{\sqrt{1 - (\lambda / \lambda_c)^2}} = rac{\lambda}{\sqrt{1 - (f_c / f)^2}} \end{aligned}$
XIV.24	Φασική ταχύτητα	$\upsilon_{p} = \lambda_{g} f = \frac{2\pi f}{\beta_{n}} = \frac{\omega}{\beta_{n}} = \frac{\omega}{\sqrt{\omega^{2} \mu \varepsilon - (n\pi/b)^{2}}}$ $= \frac{\upsilon_{o}}{\sqrt{1 - (f_{c}/f)^{2}}} = \frac{\upsilon_{o}}{\sqrt{1 - (\lambda/\lambda_{c})^{2}}}$
XIV.25	Σχέση μηκών κύματος λ_{c} , λ_{g} και λ	$rac{1}{\lambda_g^2}+rac{1}{\lambda_c^2}=rac{1}{\lambda^2}$

	Εγκάρσιο ηλεκτρομαγνη	τικό κύμα. Ρυθμός <i>TEM</i> ($\dot{E}_z = \dot{H}_z = 0$)
XIV.26	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης	$\begin{split} \dot{E}_z &= \dot{H}_z = \dot{E}_x = \dot{H}_y = 0\\ \dot{H}_x &= F_1 e^{-j\beta z}\\ \dot{E}_y &= -\eta \dot{H}_x = -\eta F_1 e^{-j\beta z} \end{split}$
XIV.27	Σταθερά διάδοσης	$\gamma = j\beta = j\omega\sqrt{\mu\varepsilon}$
XIV.28	Μήκος κύματος κυματοδηγού	$\lambda_{g} = \lambda = \frac{2\pi}{\beta} = \frac{2\pi}{\omega\sqrt{\mu\varepsilon}} = \frac{\upsilon_{o}}{f}$
XIV.29	Φασική ταχύτητα	$\upsilon_{p}=\upsilon_{o}=rac{1}{\sqrt{\muarepsilon}}$
XIV.30	Συχνότητα αποκοπής	$f_c = 0$

Σωληνωτοι Κυματοληγοι Σταθέρης Διατομής (Γενικές Σχέσεις)

XIV.31	Σταθερά διάδοσης γ	$\gamma = j\beta = j\sqrt{\omega^2 \mu \varepsilon - p^2 - q^2}$
XIV.32	Γενική μορφή z -συνιστωσών της ηλεκτρικής και μαγνητικής πεδιακής έντασης όπου $X(x) = A_1 \cos px + A_2 \sin px$ $Y(y) = B_1 \cos qy + B_2 \sin qy$ $Z(z) = C_1 e^{-\gamma z} + C_2 e^{\gamma z}$	$\dot{E}_z = X(x)Y(y)Z(z)$
XIV.33	Γενική μορφή E_x -συνιστώσας της ηλεκτρικής πεδιακής έντασης	$\dot{E}_x = -\frac{1}{\gamma^2 + \omega^2 \mu \varepsilon} \Biggl(\gamma \frac{\partial \dot{E}_z}{\partial x} + j \mu \omega \frac{\partial \dot{H}_z}{\partial y} \Biggr)$
XIV.34	Γενική μορφή E_y -συνιστώσας της ηλεκτρικής πεδιακής έντασης	$\dot{E}_{y}=rac{1}{\gamma^{2}+\omega^{2}\muarepsilon}iggl(-\gammarac{\partial\dot{E}_{z}}{\partial y}+j\mu\omegarac{\partial\dot{H}_{z}}{\partial x}iggr)$
XIV.35	Γενική μορφή H_x -συνιστώσας της μαγνητικής πεδιακής έντασης	$\dot{H}_{x} = \frac{1}{\gamma^{2} + \omega^{2} \mu \varepsilon} \left(j \omega \varepsilon \frac{\partial \dot{E}_{z}}{\partial y} - \gamma \frac{\partial \dot{H}_{z}}{\partial x} \right)$
XIV.36	Γενική μορφή H_y -συνιστώσας της μαγνητικής πεδιακής έντασης	$\dot{H}_{y} = -\frac{1}{\gamma^{2} + \omega^{2} \mu \varepsilon} \left(j \omega \varepsilon \frac{\partial \dot{E}_{z}}{\partial x} + \gamma \frac{\partial \dot{H}_{z}}{\partial y} \right)$
XIV.37	Συνθήκη για διάδοση του κύματος	$\omega^2 \mu \varepsilon - p^2 - q^2 \ge 0$
XIV.38	Συχνότητα αποκοπής του κυματοδηγού	$\gamma = 0 \Rightarrow f_c = \frac{\omega_c}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{p^2 + q^2}{\mu \varepsilon}}$
XIV.39	Μήκος κύματος αποκοπής	$\lambda_c = rac{v_o}{f_c} = rac{2\pi}{\sqrt{p^2+q^2}}$
XIV.40	Φασική σταθερά διάδοσης	$\beta = \omega \sqrt{\mu \varepsilon} \sqrt{1 - \left(\frac{f_c}{f}\right)^2} = \frac{2\pi}{\lambda} \sqrt{1 - \left(\frac{f_c}{f}\right)^2} = \frac{2\pi}{\lambda} \sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2}$
XIV.41	Φασική ταχύτητα	$\upsilon_{p} = \frac{\omega}{\beta} = \frac{\omega}{\sqrt{\omega^{2}\mu\varepsilon - p^{2} - q^{2}}} = \frac{\upsilon_{o}}{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}} = \frac{\upsilon_{o}}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}$
XIV.42	Ταχύτητα ομάδας	$egin{aligned} & v_g = rac{1}{\left(rac{deta}{d\omega} ight)} = rac{\sqrt{\omega^2 \mu arepsilon - p^2 - q^2}}{\omega \mu arepsilon} = rac{v_o^2}{v_p} \ & = v_o \sqrt{1 - \left(rac{f_c}{f} ight)^2} = v_o \sqrt{1 - \left(rac{\lambda}{\lambda_c} ight)^2} \end{aligned}$
XIV.43	Σχέση ταχυτήτων v_{o} , v_{p} και v_{g}	$v_0^2 = v_p v_g$

XIV.44	Μήκος κύματος του κυματοδηγού	$\lambda_{g} = \frac{2\pi}{\beta} = \frac{v_{p}}{f} = \frac{2\pi}{\sqrt{\omega^{2}\mu\varepsilon - p^{2} - q^{2}}}$ $= \frac{\lambda}{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}$
XIV.45	Σχέση μηκών κύματος $\lambda_{c}, \lambda_{g} $ και λ	$rac{1}{\lambda_c^2}+rac{1}{\lambda_g^2}=rac{1}{\lambda^2}$

ΚΥΜΑΤΟΔΗΓΟΙ ΟΡΘΟΓΩΝΙΚΗΣ ΔΙΑΤΟΜΗΣ ΜΕ ΔΙΑΣΤΑΣΕΙΣ *α* ΚΑΙ *b*

XIV.46	Τιμές των p και q όπως αυτές καθορίζονται από τις οριακές συνθήκες	$p = \frac{m\pi}{a}$ kai $q = \frac{n\pi}{b}$ $(m, n = 0, 1, 2,)$
XIV.47	Φασική σταθερά διάδοσης	$\beta = \sqrt{\omega^2 \mu \varepsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$
XIV.48	Συχνότητα αποκοπής	$f_c = rac{1}{2\pi} \sqrt{rac{\left(rac{m\pi}{a} ight)^2 + \left(rac{n\pi}{b} ight)^2}{\muarepsilon}}$
XIV.49	Μήκος κύματος αποκοπής	$\lambda_c = \frac{2\pi}{\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}}$
XIV.50	Φασική ταχύτητα	$\upsilon_{p} = \frac{\omega}{\sqrt{\omega^{2} \mu \varepsilon - \left(\frac{m\pi}{a}\right)^{2} - \left(\frac{n\pi}{b}\right)^{2}}}$
XIV.51	Ταχύτητα ομάδας	$\upsilon_g = \frac{\sqrt{\omega^2 \mu \varepsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}}{\omega \mu \varepsilon}$
XIV.52	Μήκος κύματος του κυματοδηγού	$\lambda_g = \frac{2\pi}{\sqrt{\omega^2 \mu \varepsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}}$

Εγκάρσιο μαγνητικό κύμα – Ρυθμοί TM_{mn} ($\dot{H}_z=0$)		
XIV.53	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης, όπου $p = \frac{m\pi}{a}, (m = 1, 2, 3,)$ $q = \frac{n\pi}{b}, (n = 1, 2, 3,)$	$\begin{split} \dot{E}_x &= -\frac{j\beta pE_o}{p^2 + q^2}\cos px\sin qy e^{-j\beta z} \\ \dot{E}_y &= -\frac{j\beta qE_o}{p^2 + q^2}\sin px\cos qy e^{-j\beta z} \\ \dot{E}_z &= E_o\sin px\sin qy e^{-j\beta z} \\ \dot{H}_x &= \frac{j\omega \varepsilon qE_o}{p^2 + q^2}\sin px\cos qy e^{-j\beta z} \\ \dot{H}_y &= -\frac{j\omega \varepsilon pE_o}{p^2 + q^2}\cos px\sin qy e^{-j\beta z} \\ \dot{H}_z &= 0 \end{split}$

Χαμηλότερος ρυθμός : TM_{II}

Εγκάρσιο ηλεκτρικό κύμα – Ρυθμοί \textit{TE}_{mn} ($\dot{E}_z=0$)		
XIV.54	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης, όπου $p = \frac{m\pi}{a}, q = \frac{n\pi}{b}$	$\begin{split} \dot{E}_x &= \frac{jq\mu\omega H_o}{p^2 + q^2} \cos px \sin qy e^{-j\beta z} \\ \dot{E}_y &= -\frac{jp\mu\omega H_o}{p^2 + q^2} \sin px \cos qy e^{-j\beta z} \\ \dot{E}_z &= 0 \\ \dot{H}_x &= \frac{j\beta pH_o}{p^2 + q^2} \sin px \cos qy e^{-j\beta z} \\ \dot{H}_y &= \frac{j\beta qH_o}{p^2 + q^2} \cos px \sin qy e^{-j\beta z} \\ \dot{H}_z &= H_o \cos px \cos qy e^{-j\beta z} \end{split}$

Πρώτοι ρυθμοί : TE_{10} , TE_{01}		
	Υπολογισμός της ισχύος	σε κυματοδηγούς ορθογωνικής διατομής
XIV.55	Μέση χρονική τιμή ισχύος ανά μονάδα επιφανείας	$\left\langle P_z \right\rangle = \frac{1}{2} Z_o (\dot{H}_x \overset{*}{H}_x + \dot{H}_y \overset{*}{H}_y)$
XIV.56	Κυματική σύνθετη αντίσταση	$Z_o = \frac{\dot{E}_x}{\dot{H}_y} = -\frac{\dot{E}_y}{\dot{H}_x}$
XIV.57	Κυματική σύνθετη αντίσταση για εγκάρσια ηλεκτρικά κύματα (ρυθμοί <i>TE</i>)	$Z_o^{\rm TE} = \frac{\omega \mu}{\beta}$
XIV.58	Κυματική σύνθετη αντίσταση για εγκάρσια μαγνητικά κύματα (ρυθμοί TM)	$Z_{o}^{TM}=rac{eta}{\omegaarepsilon}$
XIV.59	Σχέση των σύνθετων αντιστάσεων Z_0^{TE} και Z_0^{TM}	$Z_{_0}^{^{TE}}Z_{_0}^{^{TM}}=\eta^2=rac{\mu}{arepsilon}$
XIV.60	Συνολική μέση ισχύς στην περίπτωση ρυθμών <i>TM</i>	$P_{\scriptscriptstyle T} = rac{abE_0^2}{8\eta} iggl(rac{f}{f_c}iggr)^2 \sqrt{1 - iggl(rac{f_c}{f}iggr)^2}$
XIV.61	Συνολική μέση ισχύς στην περίπτωση ρυθμών TE_{mn} εκτός των ρυθμών TE_{10} και TE_{01}	$P_{\scriptscriptstyle T} = rac{ab\eta H_0^2}{8} iggl(rac{f}{f_c} iggr)^2 \sqrt{1 - iggl(rac{f_c}{f} iggr)^2}$
XIV.62	Συνολική μέση ισχύς στην περίπτωση των ρυθμών TE_{10} και TE_{01}	$P_{T}=rac{ab\eta H_{0}^{2}}{4}{\left(rac{f}{f_{c}} ight)}^{2}\sqrt{1-{\left(rac{f_{c}}{f} ight)}^{2}}$

	Απώλειες στα τοιχώματα ορθογωνικών κυματοδηγών		
XIV.63	Μεταδιδόμενη ισχύς σε απόσταση z σε κυματοδηγό με μη υπεραγώγιμα τοιχώματα, όπου P ₀ η ισχύς εισόδου και α η σταθερά απόσβεσης	$P_{_T}(z)=P_{_0}e^{-2lpha z}$	
XIV.64	Ισχύς απωλειών ανά μονάδα μήκους	$P_{L} = -\frac{\partial P_{T}}{\partial z} = 2\alpha P_{T}$	
XIV.65	Σταθερά απόσβεσης	$\alpha = \frac{P_L}{2P_T}$	
XIV.66	Επιφανειακή αντίσταση τοιχωμάτων	$R_{s} = \frac{1}{\sigma\delta} = \sqrt{\frac{\mu\omega}{2\sigma}} = \sqrt{\frac{\pi\mu f}{\sigma}}$	
XIV.67	Ισχύς απωλειών ανά μονάδα μήκους σε τοίχωμα παράλληλο στο επίπεδο xOz	$P_{\scriptscriptstyle L} = rac{1}{2} \int_{x_1}^{x_2} R_{\scriptscriptstyle S} \left \dot{H}_t ight ^2 dx$	
XIV.68	Συνολική ισχύς απωλειών ανά μονάδα μήκους	$P_{L}=P_{L1}+P_{L2}+P_{L3}+P_{L4}=R_{S}H_{0}^{2}igg(b+rac{1}{2\pi^{2}}a^{3}\omega^{2}\muarepsilonigg)$	
XIV.69	Σταθερά απόσβεσης για τους ρυθμούς $TM_{\scriptscriptstyle mn}$	$\alpha_{\scriptscriptstyle TM_{\scriptscriptstyle mn}} = \frac{2R_{\scriptscriptstyle S}}{b\eta \sqrt{1 - \left(\frac{f_c}{f}\right)^2}} \frac{n^2 + m^2 \left(\frac{b}{a}\right)^3}{n^2 + m^2 \left(\frac{b}{a}\right)^2}$	
XIV.70	Σταθερά απόσβεσης για το ρυθμό TE_{10}	$\begin{aligned} \alpha_{TE_{10}} &= \frac{R_s}{b\eta \sqrt{1 - \left(\frac{f_c}{f}\right)^2}} \left[1 + \frac{2b}{a} \left(\frac{f_c}{f}\right)^2 \right] = \\ &= \frac{1}{b} \sqrt{\frac{\pi \varepsilon f}{\sigma \left[1 - \left(\frac{f_c}{f}\right)^2\right]}} \left[1 + \frac{2b}{a} \left(\frac{f_c}{f}\right)^2 \right] \end{aligned}$	
XIV.71	Σταθερά απόσβεσης για τους ρυθμούς <i>TE</i> _{m0}	$lpha_{_{TE_{m0}}}=rac{R_{_S}}{b\eta \sqrt{1-\left(rac{f_c}{f} ight)^2}}iggl[1+rac{2b}{a}iggl(rac{f_c}{f}iggr)^2iggr]$	
XIV.72	Σταθερά απόσβεσης για τους ρυθμούς $TE_{mn},\;n>0$	$lpha_{\scriptscriptstyle TE_{\scriptscriptstyle mn}} = rac{2R_{\scriptscriptstyle S}}{b\eta\sqrt{1-\left(rac{f_c}{f} ight)^2}} \ \cdot \left\{ \left(1+rac{b}{a} ight) \left(rac{f_c}{f} ight)^2 + rac{b}{a} \left[1-\left(rac{f_c}{f} ight)^2 ight] \left(rac{abm^2+a^2n^2}{b^2m^2+a^2n^2} ight) ight\}$	

ΚΥΛΙΝΔΡΙΚΟΙ ΚΥΜΑΤΟΔΗΓΟΙ ΑΚΤΙΝΑΣ α

		$\dot{E}_z = J_n(hr)(A_n \cos n\varphi + B_n \sin n\varphi)e^{-\gamma z}$ $\dot{H}_z = J_n(hr)(C_n \cos n\varphi + D_n \sin n\varphi)e^{-\gamma z}$
XIV.73	Γενική μορφή των συνιστωσών της ηλεκτρικής και μαγνητικής πεδιακής έντασης, όπου $h^2 = \gamma^2 + \omega^2 \mu \varepsilon$ και J_n η συνάρτηση Bessel πρώτου είδους και n τάξης	$\dot{H}_r = rac{1}{h^2} iggl(rac{j\omegaarepsilon}{r} rac{\partial \dot{E}_z}{\partial arphi} - \gamma rac{\partial \dot{H}_z}{\partial r} iggr)$
		$\dot{H}_{\varphi} = \frac{1}{h^2} \Biggl(-j\omega\varepsilon \frac{\partial \dot{E}_z}{\partial r} - \frac{\gamma}{r} \frac{\partial \dot{H}_z}{\partial \varphi} \Biggr)$
		$\dot{E}_r = rac{1}{h^2} iggl(-\gamma rac{\partial \dot{E}_z}{\partial r} - rac{j\omega\mu}{r} rac{\partial \dot{H}_z}{\partial arphi} iggr)$
		$\dot{E}_{\varphi} = \frac{1}{h^2} \Biggl(-\frac{\gamma}{r} \frac{\partial \dot{E}_z}{\partial \varphi} + j \omega \mu \frac{\partial \dot{H}_z}{\partial r} \Biggr)$

	Εγκάρσιο μαγνητικό κύμα – Ρυθμοί TM_{mn} ($\dot{H}_z=0$)		
XIV.74	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης	$\begin{split} \dot{E}_r &= \frac{\beta}{\omega\varepsilon} \dot{H}_{\varphi} \\ \dot{E}_{\varphi} &= \frac{\beta}{\omega\varepsilon} \dot{H}_r \\ \dot{E}_z &= A_n J_n (hr) \cos n\varphi e^{-j\beta z} \\ \dot{H}_r &= -\frac{j\omega\varepsilon n}{h^2 r} A_n J_n (hr) \sin n\varphi e^{-j\beta z} \\ \dot{H}_{\varphi} &= -\frac{j\omega\varepsilon}{h} A_n J'_n (hr) \cos n\varphi e^{-j\beta z} \\ \dot{H}_z &= 0 \end{split}$	
XIV.75	Οριακή συνθήκη	$\dot{E}_z\Big _{r=a} = 0 \Rightarrow J_n(ha) = 0$	
XIV.76	m -οστή ρίζα της συνάρτησης Bessel $J_n(ha)=0$, όπου n η τάξη της	$(ha)_{nm}$	
XIV.77	Συχνότητα αποκοπής για τον ρυθμό $TM_{\scriptscriptstyle mn}$	$f_c=rac{1}{2\pi}rac{h_{nm}}{\sqrt{\muarepsilon}}$, όπου $h_{nm}=rac{(ha)_{nm}}{a}$	
XIV.78	Φασική σταθερά διάδοσης	$eta = \sqrt{\omega^2 \mu arepsilon - h_{nm}^2} = \omega \sqrt{\mu arepsilon} \sqrt{1 - \left(rac{f_c}{f} ight)^2}$	
XIV.79	Φασική ταχύτητα	$\upsilon_{p} = \frac{\omega}{\beta} = \frac{\omega}{\sqrt{\omega^{2} \mu \varepsilon - h_{nm}^{2}}} = \frac{\upsilon_{0}}{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}}$	
XIV.80	Μήκος κύματος του κυματοδηγού	$\lambda_{g} = rac{arphi_{p}}{f} = rac{2\pi}{\sqrt{\omega^{2}\muarepsilon - h_{nm}^{2}}} = rac{\lambda}{\sqrt{1 - \left(rac{f_{c}}{f} ight)^{2}}}$	
XIV.81	Συχνότητα αποκοπής για τον ρυθμό $TM_{\scriptscriptstyle 01}$	$f_{c_{TM_{01}}} = \frac{1}{2\pi} \frac{h_{01}}{\sqrt{\mu\varepsilon}} = \frac{1}{2\pi} \frac{(ha)_{01}}{a\sqrt{\mu\varepsilon}} = \frac{1}{2\pi} \frac{2,405}{a\sqrt{\mu\varepsilon}} = \frac{0,383}{a\sqrt{\mu\varepsilon}}$	

	Εγκάρσιο ηλεκτρικό κύμα – Ρυθμοί TE_{mn} ($\dot{E}_z=0$)		
XIV.82	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης	$\begin{split} \dot{E}_r &= \frac{\omega\mu}{\beta} \dot{H}_{\varphi} \\ \dot{E}_{\varphi} &= -\frac{\omega\mu}{\beta} \dot{H}_r \\ \dot{E}_z &= 0 \\ \dot{H}_r &= -\frac{j\beta}{h} C_n J'_n(hr) \cos n\varphi e^{-j\beta z} \\ \dot{H}_{\varphi} &= \frac{j\beta n}{h^2 r} C_n J_n(hr) \sin n\varphi e^{-j\beta z} \\ \dot{H}_z &= C_n J_n(hr) \cos n\varphi e^{-j\beta z} \end{split}$	
XIV.83	Οριακή συνθήκη	$\dot{E}_{arphi}\Big _{r=a}=0 \ \Rightarrow J_{n}'(ha)=0$	
XIV.84	m -οστή ρίζα της $J'_n(ha)=0$, όπου n η τάξη της συνάρτησης Bessel	$(ha)'_{nm}$	
XIV.85	Συχνότητα αποκοπής για τον ρυθμό ${TE}_{\!\scriptscriptstyle mn}$	$f_c = rac{1}{2\pi} rac{h_{nm}}{\sqrt{\mu arepsilon}}$, όπου $h_{nm} = rac{(ha)'_{nm}}{a}$	
XIV.86	Φασική σταθερά διάδοσης	$eta = \omega \sqrt{\mu arepsilon} \sqrt{1 - \left(rac{f_c}{f} ight)^2}$	
XIV.87	Φασική ταχύτητα	$\upsilon_{p} = \frac{\omega}{\beta} = \frac{\omega}{\sqrt{\omega^{2} \mu \varepsilon - h_{nm}^{2}}} = \frac{\upsilon_{0}}{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}}$	
XIV.88	Μήκος κύματος του κυματοδηγού	$\lambda_g = \frac{v_p}{f} = \frac{2\pi}{\sqrt{\omega^2 \mu \varepsilon - h_{nm}^2}} = \frac{\lambda}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$	
XIV.89	Συχνότητα αποκοπής για τον ρυθμό ΤΕ ₁₁	$f_{c_{TE_{11}}} = \frac{1}{2\pi} \frac{h_{11}}{\sqrt{\mu\varepsilon}} = \frac{1}{2\pi} \frac{(ha)_{11}'}{a\sqrt{\mu\varepsilon}} = \frac{1}{2\pi} \frac{1,841}{a\sqrt{\mu\varepsilon}} = \frac{0,293}{a\sqrt{\mu\varepsilon}}$	

	Σταθερά απόσβεσ	της για τοιχώματα με απώλειες
XIV.90	Σταθερά απόσβεσης για τους ρυθμούς $TM_{\scriptscriptstyle mn}$	$lpha_{_{T\!M_{nm}}}=rac{R_{_S}}{a\eta}rac{1}{1-\left(rac{f_c}{f} ight)^2}$
XIV.91	Σταθερά απόσβεσης για τους ρυθμούς TE_{mn}	$lpha_{_{T\!E_{nm}}}=rac{R_{_S}}{a\eta}rac{1}{1-\left(rac{f_c}{f} ight)^2}{\left(rac{f_c}{f} ight)^2}+rac{n^2}{(ha)_{_{nm}}^{\prime 2}-n^2}$

Kοιλοτητές – Σύντονιστές

	Ορθογωνικές κο	ιλότητες διαστάσεων $a imes b imes c$
XIV.92	Γενική έκφραση για οποιαδήποτε συνιστώσα των διανυσμάτων $\dot{\mathbf{E}}$ και $\dot{\mathbf{H}}$ όπου $p = \frac{m\pi}{a}, \qquad (m = 0, 1, 2,)$ $q = \frac{n\pi}{b}, \qquad (n = 0, 1, 2,)$ $r = \frac{l\pi}{c}, \qquad (l = 0, 1, 2,)$	$\psi(x, y, z) = (A_1 \cos px + A_2 \sin px) \cdot (B_1 \cos qy + B_2 \sin qy)$ $\cdot (C_1 \cos rz + C_2 \sin rz)$
XIV.93	Γενική σχέση που ικανοποιούν οι σταθερές m, n, l	$\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{l\pi}{c}\right)^2 = \omega^2 \mu \varepsilon$
XIV.94	Συνιστώσες της ηλεκτρικής πεδιακής έντασης	$\dot{E}_x = \dot{E}_{x0} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \sin \frac{l\pi z}{c}$ $\dot{E}_y = \dot{E}_{y0} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} \sin \frac{l\pi z}{c}$ $\dot{E}_z = \dot{E}_{z0} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \cos \frac{l\pi z}{c}$
XIV.95	Σχέση ρυθμών και πλατών των συνιστωσών και του ηλεκτρικού πεδίου (νόμος του Gauss)	$\nabla \cdot \dot{\mathbf{E}} = 0 \Rightarrow \mathbf{k} \cdot \dot{\mathbf{E}}_0 = 0$ $\mathbf{k} = \frac{m\pi}{a} \mathbf{x}_0 + \frac{n\pi}{b} \mathbf{y}_0 + \frac{l\pi}{c} \mathbf{z}_0$ $\dot{\mathbf{E}}_0 = \dot{E}_{x0} \mathbf{x}_0 + \dot{E}_{y0} \mathbf{y}_0 + \dot{E}_{z0} \mathbf{z}_0$
XIV.96	Συνιστώσες της μαγνητικής πεδιακής έντασης	$\dot{H}_x = j\dot{H}_{x0}\sin\frac{m\pi x}{a}\cos\frac{n\pi y}{b}\cos\frac{l\pi z}{c}$ $\dot{H}_y = j\dot{H}_{y0}\cos\frac{m\pi x}{a}\sin\frac{n\pi y}{b}\cos\frac{l\pi z}{c}$ $\dot{H}_z = j\dot{H}_{z0}\cos\frac{m\pi x}{a}\cos\frac{n\pi y}{b}\sin\frac{l\pi z}{c}$
XIV.97	Σχέση ρυθμών και πλατών των συνιστωσών και του μαγνητικού πεδίου	$\dot{\mathbf{H}}_{_o}=\dot{H}_{_{x0}}\mathbf{x}_{_0}+\dot{H}_{_{y0}}\mathbf{y}_{_0}+\dot{H}_{_{z0}}\mathbf{z}_{_0}=rac{1}{\mu\omega}\mathbf{k} imes\dot{\mathbf{E}}_{_0}$
XIV.98	Συχνότητες ταλάντωσης στο εσωτερικό της κοιλότητας	$f = \frac{1}{2\sqrt{\mu\varepsilon}} \left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{l}{c}\right)^2 \right]^{1/2}$
XIV.99	Μήκος κύματος που αντιστοιχεί στη συχνότητα ταλάντωσης	$\lambda = \frac{\upsilon_o}{f} = \frac{1}{\left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{l}{c}\right)^2\right]^{1/2}}$
XIV.100	Συχνότητες ταλάντωσης στην περίπτωση που η κοιλότητα έχει τη μορφή κύβου $(a = b = c)$	$f = \frac{1}{2a\sqrt{\mu\varepsilon}}(m^2 + n^2 + l^2)^{1/2}$

Παράδειγμα	:	Ρυθμός	TE ₁₀₁
------------	---	--------	--------------------------

		$\dot{E}_x = \dot{E}_z = 0$
		$\dot{E}_{y}=\dot{E}_{y0}\sinrac{\pi x}{a}\sinrac{\pi z}{c}$
XIV.101	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης	$\dot{H}_x = -\frac{j}{\mu\omega}\frac{\partial \dot{E}_y}{\partial z} = -j\frac{\pi \dot{E}_{y0}}{\mu\omega c}\sin\frac{\pi x}{a}\cos\frac{\pi z}{c}$
		$\dot{H}_y = 0$
		$\dot{H}_{z} = \frac{j}{\mu\omega} \frac{\partial \dot{E}_{y}}{\partial x} = \frac{j\pi \dot{E}_{y0}}{\mu\omega a} \cos\frac{\pi x}{a} \sin\frac{\pi z}{c}$
XIV.102	Συχνότητα συντονισμού	$f = \frac{1}{2\sqrt{\mu\varepsilon}} \left(\frac{1}{a^2} + \frac{1}{c^2}\right)^{1/2}$
XIV.103	Συνολική ισχύς απωλειών στα τοιχώματα	$P_{\scriptscriptstyle L} = R_{\scriptscriptstyle S} igg(rac{ab}{2c^2} + rac{c}{4a} + rac{a}{4c} + rac{bc}{2a^2} igg) igg(rac{\pi E_{_{y0}}}{\mu \omega} igg)^2$
XIV.104	Συνολική αποθηκευμένη ενέργεια	$W = 2W_e = rac{abc}{8} arepsilon E_{y0}^2$
XIV.105	Σταθερά απόσβεσης	$\alpha = R_s \left(\frac{2}{c^3} + \frac{1}{a^2b} + \frac{1}{bc^2} + \frac{2}{a^3}\right) \frac{\pi^2}{\mu^2 \omega^2 \varepsilon}$
XIV.106	Συντελεστής ποιότητας	$Q = \frac{\omega}{2\alpha} = \frac{\omega^3 \mu^2 \varepsilon}{2R_s \pi^2 \left(\frac{2}{c^3} + \frac{1}{a^2b} + \frac{1}{bc^2} + \frac{2}{a^3}\right)}$
XIV.107	Συντελεστής ποιότητας στην περίπτωση κυβικής κοιλότητας	$Q = \frac{\sqrt{2\pi}}{6} \frac{\sqrt{\mu/\varepsilon}}{R_s} = \frac{\sqrt{2\pi}}{6} \frac{\eta}{R_s} = 0.74 \frac{\eta}{R_s}$

Κυλινδρικές κοιλότητες – Εγκάρσια ηλεκτρικά κύματα (ΤΕ_{mnl} ρυθμοί)

XIV.108	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης, όπου $\beta = \frac{l\pi}{L}, \qquad (l = 0, 1, 2,)$	$\begin{split} \dot{E}_r &= \frac{j\omega\mu n}{h^2 r} H_o J_n(hr) \sin n\varphi \sin \beta z \\ \dot{E}_\varphi &= \frac{j\omega\mu}{h^2 r} H_o J_n'(hr) \cos n\varphi \sin \beta z \\ \dot{E}_z &= 0 \\ \dot{H}_r &= -\frac{j\beta}{h} H_o J_n'(hr) \cos n\varphi \sin \beta z \\ \dot{H}_\varphi &= -\frac{\beta}{h^2 r} H_o J_n(hr) \sin n\varphi \cos \beta z \\ \dot{H}_z &= H_o J_n(hr) \cos n\varphi \sin \beta z \end{split}$
XIV.109	Συχνότητες συντονισμού για τους ρυθμούς (n,m,l)	$f_{nml}=rac{1}{\sqrt{\muarepsilon}}\sqrt{\left(rac{l}{2L} ight)^2+\left(rac{h_{nm}'}{2\pi} ight)^2}$
XIV.110	Μήκη κύματος που αντιστοιχούν στις συχνότητες λ _{nml}	$\lambda_{\scriptscriptstyle nml} = rac{1}{\sqrt{\left(rac{l}{2L} ight)^2 + \left(rac{h_{\scriptscriptstyle nm}'}{2\pi} ight)^2}}$

XIV.111	Μήκος κύματος για τον ρυθμό <i>ΤΕ₀₁₁</i>	$\lambda_{_{TE_{011}}}=rac{2L}{\sqrt{1+\left(rac{3,832}{\pi}rac{L}{a} ight)^2}}$
XIV.112	Μήκος κύματος για τον ρυθμό TE_{111}	$\lambda_{\scriptscriptstyle TE_{\scriptscriptstyle 111}} = rac{2L}{\sqrt{1 + \left(rac{1,841}{\pi}rac{L}{a} ight)^2}}$

Κυλινδρικές κοιλότητες – Εγκάρσια μαγνητικά κύματα (TM_{mnl} ρυθμοί)

XIV.113	Συνιστώσες της ηλεκτρικής και μαγνητικής πεδιακής έντασης $\beta = \frac{l\pi}{L}, \qquad (l = 0, 1, 2,)$	$\begin{split} \dot{E}_r &= -\frac{\beta}{h} E_o J'_n(hr) \cos n\varphi \sin \beta z \\ \dot{E}_\varphi &= \frac{n\beta}{h^2 r} E_o J_n(hr) \sin n\varphi \sin \beta z \\ \dot{E}_z &= E_o J_n(hr) \cos n\varphi \cos \beta z \\ \dot{H}_r &= -\frac{j\omega\varepsilon n}{h^2 r} E_o J_n(hr) \sin n\varphi \cos \beta z \\ \dot{H}_\varphi &= -\frac{j\omega\varepsilon n}{h} E_o J'_n(hr) \cos n\varphi \cos \beta z \\ \dot{H}_z &= 0 \end{split}$
XIV.114	Συχνότητες συντονισμού για τους ρυθμού ς (n,m,l)	$f_{nml} = rac{1}{\sqrt{\muarepsilon}} \sqrt{\left(rac{l}{2L} ight)^2 + \left(rac{h_{nm}}{2\pi} ight)^2}$
XIV.115	Μήκη κύματος που αντιστοιχούν στις συχνότητες λ_{nml}	$\lambda_{nml} = rac{1}{\sqrt{\left(rac{l}{2L} ight)^2 + \left(rac{h_{nm}}{2\pi} ight)^2}}$
XIV.116	Μήκος κύματος για τον ρυθμό <i>ΤΜ₀₁₁</i>	$\lambda_{_{TM_{011}}} = rac{2L}{\sqrt{1 + \left(rac{2,405}{\pi}rac{L}{a} ight)^2}}$

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ

Πεδιο και Δυναμικά Καθυστερήσης

XV.1	Καθυστερημένα δυναμικά (για ημιτονοειδείς διεγέρσεις), όπου R είναι η απόσταση του σημείου παρατήρησης P(x, y, z) από τη θέση (x', y', z') του στοιχειώδους όγκου dV'	$egin{aligned} \dot{\phi} &= rac{1}{4\piarepsilon_0} \iiint_{V'} rac{\dot{ ho}(x',y',z')}{R} e^{-jeta R} dV' \ \dot{\mathbf{A}} &= rac{\mu_0}{4\pi} \iiint_{V'} rac{\dot{\mathbf{J}}(x',y',z')}{R} e^{-jeta R} dV' \end{aligned}$
XV.2	Το Η/Μ πεδίο συναρτήσει του διανυσματικού δυναμικού	$egin{aligned} \dot{\mathbf{E}} &= -j\omegaiggl[\dot{\mathbf{A}} + rac{1}{eta^2} abla(abla \cdot \dot{\mathbf{A}})iggr] \ \dot{\mathbf{H}} &= rac{1}{\mu_0} abla imes \dot{\mathbf{A}} \end{aligned}$

ΤΟ ΒΡΑΧΥ (Η΄ ΣΤΟΙΧΕΙΩΔΕΣ) ΔΙΠΟΛΟ

XV.3	Ρεύμα που διαρρέει το δίπολο (διέγερση)	$I=I_0\cos\omega t$
XV.4	Φορτίο διπόλου	$Q = \frac{I_0 \sin \omega t}{\omega}, \dot{Q} = -j \frac{I_0}{\omega}$
XV.5	Καθυστερημένο μαγνητικό διανυσματικό δυναμικό για την περίπτωση διπόλου μήκους <i>l</i>	$\dot{\mathbf{A}} = rac{\mu_0}{4\pi} \int_{-l/2}^{l/2} \dot{\mathbf{I}} rac{e^{-jeta R}}{R} dz' = rac{\mu_0 I_0 \mathbf{z}_0}{4\pi} \int_{-l/2}^{l/2} rac{e^{-jeta R}}{R} dz'$
XV.6	Καθυστερημένο μαγνητικό διανυσματικό δυναμικό (σε απόσταση r πολύ μεγαλύτερη από το μήκος του διπόλου)	$\dot{\mathbf{A}}=\dot{A}_{z}\mathbf{z}_{_{0}}=rac{\mu_{_{0}}I_{_{0}}l}{4\pi}rac{e^{-jeta r}}{r}\mathbf{z}_{_{0}}$
XV.7	Καθυστερημένο βαθμωτό δυναμικό (σε απόσταση r πολύ μεγαλύτερη από το μήκος του διπόλου)	$\dot{\phi} = rac{I_0 l\cos heta}{4\pi\omegaarepsilon_0} \Big(rac{eta}{r} - rac{j}{r^2}\Big) e^{-jeta r}$
XV.8	Συνιστώσες του μαγνητικού διανυσματικού δυναμικού σε σφαιρικές συντεταγμένες	$\dot{A}_r = rac{\mu_0 I_0 l}{4\pi r} \cos heta e^{-jeta r}$ $\dot{A}_ heta = -rac{\mu_0 I_0 l}{4\pi r} \sin heta e^{-jeta r}$ $\dot{A}_arphi = 0$
XV.9	Συνιστώσες του μαγνητικού πεδίου σε σφαιρικές συντεταγμένες	$\begin{split} \dot{H}_r &= 0 \\ \dot{H}_\theta &= 0 \\ \dot{H}_\varphi &= \frac{I_0 l \sin \theta}{4\pi} \bigg(\frac{1}{r^2} + \frac{j\beta}{r} \bigg) e^{-j\beta r} \end{split}$

XV.10	Συνιστώσες του ηλεκτρικού πεδίου σε σφαιρικές συντεταγμένες	$\begin{split} \dot{E}_r &= -j \frac{I_0 l \cos \theta}{2\pi \omega \varepsilon_0} \bigg(\frac{j\beta}{r^2} + \frac{1}{r^3} \bigg) e^{-j\beta r} \\ \dot{E}_\theta &= -j \frac{I_0 l \sin \theta}{4\pi \omega \varepsilon_0} \bigg(-\frac{\beta^2}{r} + \frac{j\beta}{r^2} + \frac{1}{r^3} \bigg) e^{-j\beta r} \\ \dot{E}_\varphi &= 0 \end{split}$
XV.11	Το πεδίο σε πολύ μεγάλες αποστάσεις (Πεδίο ακτινοβολίας)	$\begin{split} \dot{\mathbf{E}} &\cong \dot{E}_{\theta} \mathbf{\theta}_{0} \cong j \frac{I_{0} l \beta^{2} \sin \theta}{4 \pi \omega \varepsilon_{0} r} e^{-j \beta r} \mathbf{\theta}_{0} = j \frac{I_{0} l \omega \mu_{0} \sin \theta}{4 \pi r} e^{-j \beta r} \mathbf{\theta}_{0} \\ \dot{\mathbf{H}} &= \dot{H}_{\varphi} \mathbf{\varphi}_{0} \cong j \frac{I_{0} l \beta \sin \theta}{4 \pi r} e^{-j \beta r} \mathbf{\varphi}_{0} = j \frac{I_{0} l \omega \sqrt{\mu_{0} \varepsilon_{0}} \sin \theta}{4 \pi r} e^{-j \beta r} \mathbf{\varphi}_{0} \\ \dot{E}_{r} \cong \dot{E}_{\varphi} = \dot{H}_{r} = \dot{H}_{\theta} = 0 \end{split}$
XV.12	Χαρακτηριστική αντίσταση του κενού	$\eta_0 = \frac{E_{ heta}}{H_{arphi}} = \sqrt{\frac{\mu_0}{arepsilon_0}} \cong 120\pi$ (\Omega)
XV.13	Το πεδίο στην κοντινή ζώνη $(r\ll\lambda)$	$egin{aligned} \dot{E}_r &\cong rac{Q_0 l\cos heta}{2\piarepsilon_0 r^3} \ \dot{E}_ heta &\cong rac{Q_0 l\sin heta}{4\piarepsilon_0 r^3} \ \dot{H}_\phi &\cong rac{I_0 l\sin heta}{4\pi r^2} \end{aligned}$
XV.14	Ακτινική συνιστώσα του διανύσματος του Poynting	$P_{r} = \frac{I_{0}^{2}l^{2}\beta^{3}}{32\pi^{2}\omega\varepsilon_{0}}\frac{\sin^{2}\theta}{r^{2}} = \frac{I_{0}^{2}l^{2}\omega^{2}\mu_{0}}{32\pi^{2}c}\frac{\sin^{2}\theta}{r^{2}}$ $= \frac{\eta_{0}(\beta I_{0}l)^{2}}{32\pi^{2}}\frac{\sin^{2}\theta}{r^{2}} = \frac{\eta_{0}I_{0}^{2}}{8}\left(\frac{l}{\lambda}\right)^{2}\frac{\sin^{2}\theta}{r^{2}}$
XV.15	Συνολική ακτινοβολούμενη μέση ισχύς	$P_{\alpha} = \frac{I_0 l^2 \beta^3}{12\pi\omega\varepsilon_0} = \frac{I_0^2 l^2 \beta\omega\mu_0}{12\pi} = \frac{\eta_0 (\beta I_0 l)^2}{12\pi}$ $= \frac{\pi I_0^2}{3} \eta_0 \left(\frac{l}{\lambda}\right)^2 = 40\pi^2 I_0^2 \left(\frac{l}{\lambda}\right)^2$
XV.16	Ορισμός αντιστάσεως ακτινοβολίας R_a	$P_a=rac{1}{2}R_a I_0^2$
XV.17	Αντίσταση ακτινοβολίας	$R_a = \frac{l^2 \beta^3}{6\pi\omega\varepsilon_0} = \frac{\beta^2 l^2 \eta_0}{6\pi} = \frac{2\pi}{3} \eta_0 \left(\frac{l}{\lambda}\right)^2 = 80\pi^2 \left(\frac{l}{\lambda}\right)^2$

ΕΝΤΑΣΗ ΑΚΤΙΝΟΒΟΛΙΑΣ – ΚΑΤΕΥΘΥΝΤΙΚΟΤΗΤΑ – ΚΕΡΔΟΣ ΚΕΡΑΙΑΣ

XV.18	Ορισμός έντασης ακτινοβολίας (ακτινοβολούμενη μέση ισχύς ανά μονάδα στερεάς γωνίας)	$p(heta, \phi) = \left[rac{1}{2}\operatorname{Re}(\dot{\mathbf{E}} imes \dot{\mathbf{H}}) \cdot \mathbf{r}_{0} ight]r^{2} = P_{r}r^{2} = rac{dP_{a}}{d\Omega}$
XV.19	Κατευθυντικότητα κεραίας (λόγος μέγιστης έντασης ακτινοβολίας προς μέση ένταση ακτινοβολίας)	$D = \frac{p_{\max}}{p_{av}} = \frac{4\pi p_{\max}}{P_a} \frac{4\pi p_{\max}}{\int_0^{\pi} \int_0^{2\pi} p(\theta, \varphi) \sin \theta d\theta d\varphi}$
XV.20	Μέση ακτινοβολούμενη ισχύς της κεραίας	$P_a = \iiint p(\theta,\varphi) d\Omega = \int_0^{\pi} \int_0^{2\pi} p(\theta,\varphi) \sin \theta d\theta d\varphi = 4\pi p_{av}$

XV.21	Ένταση ακτινοβολίας ισοτροπικής κεραίας	$p_{_0}=p_{_{av}}=rac{P_{_{in}}}{4\pi}=rac{P_{_a}}{4\pi}$
XV.22	Κέρδος κεραίας (λόγος μέγιστης έντασης ακτινοβολίας κεραίας προς μέγιστη ένταση ακτινοβολίας κεραίας αναφοράς)	$G=rac{p_{ ext{max}}}{(p_{ ext{max}})_r}$
XV.23	Κέρδος (κεραία αναφοράς η ισοτροπική)	$G_{_{0}}=rac{p_{_{\max }}}{p_{_{0}}}=rac{p_{_{\max }}}{p_{_{av}}}=rac{4\pi p_{_{\max }}}{P_{_{in}}}$
XV.24	Συνάρτηση κατευθυντικότητας	$D(\theta,\varphi) = \frac{p(\theta,\varphi)}{p_{av}} = \frac{4\pi p(\theta,\varphi)}{P_a} = \frac{4\pi p(\theta,\varphi)}{\int_0^\pi \int_0^{2\pi} p(\theta,\varphi) \sin \theta d\theta d\varphi}$
XV.25	Συνάρτηση κέρδους	$G(heta, arphi) = rac{p(heta, arphi)}{p_0} = rac{4\pi p(heta, arphi)}{P_{_{in}}} = rac{4\pi p(heta, arphi)}{P_a + P_{_{lpha\pi}}}$
XV.26	Συνολική ισχύς εισόδου της κεραίας (<i>P</i> _{απ} : ισχύς απωλειών)	$P_{in}=P_a+P_{lpha\pi}$
XV.27	Βαθμός απόδοσης μιας κεραίας	$n = \frac{P_a}{P_{in}} = \frac{P_a}{P_a + P_{\alpha\pi}} = \frac{G}{D}$
XV.28	Ενεργό μήκος γραμμικής κεραίας	$h_{_{e}}=rac{1}{I_{_{0}}}\int_{^{-h/2}}^{^{h/2}}\dot{I}(z)dz$
XV.29	Ένταση ακτινοβολίας	$p(heta,arphi)=p(heta)=rac{(eta I_0 l)^2}{32\pi^2}\eta_0\sin^2 heta$
XV.30	Μέγιστη τιμή της έντασης ακτινοβολίας	$p_{ m max}=rac{(eta I_0 l)^2}{32\pi^2}\eta_0$
XV.31	Κατευθυντικότητα στοιχειώδους διπόλου	D = 1,5, $D = 1,761$ (db)
XV.32	Συνάρτηση κατευθυντικότητας στοιχειώδους διπόλου	$D(\theta, \varphi) = D(\theta) = 1,5 \sin^2 \theta$
XV.33	Κατευθυντικότητα και κέρδος σε decibels	$D_{(db)} = 10 \log D$, $G_{(db)} = 10 \log G$
XV.34	Γωνία μισής ισχύος στοιχειώδους διπόλου	$\theta' = 45^{\circ}$

ΓΡΑΜΜΙΚΗ ΔΙΠΟΛΙΚΗ ΚΕΡΑΙΑ ΜΗΚΟΥΣ l = 2h(τοποθετημένη στον άζονα z με κέντρο στο z = 0)

XV.35	Ρευματική κατανομή της κεραίας	$I(z') = \begin{cases} I_0 \sin \beta (h - z') & h \ge z' \ge 0\\ I_0 \sin \beta (h + z') & 0 \ge z' \ge -h \end{cases}$
XV.36	Το μαγνητικό διανυσματικό δυναμικό	$\dot{\mathbf{A}} = \dot{A}_z \mathbf{z}_0 = \frac{\mu_0 I_0 e^{-j\beta r}}{2\pi\beta r} \frac{\cos(\beta h\cos\theta) - \cos\beta h}{\sin^2\theta} \mathbf{z}_0$
XV.37	Το ηλεκτρικό πεδίο σε απομακρυσμένα σημεία	$\dot{\mathbf{E}} = \dot{E}_{\theta} \mathbf{\theta}_{0} = \frac{j \eta_{0} I_{0} e^{-j\beta r}}{2\pi r} \frac{\cos(\beta h \cos \theta) - \cos \beta h}{\sin \theta} \mathbf{\theta}_{0}$
XV.38	Το μαγνητικό πεδίο σε απομακρυσμένα σημεία	$\dot{\mathbf{H}} = \dot{H}_{arphi} \mathbf{arphi}_{0} = rac{\dot{E}_{ heta}}{\eta_{0}} \mathbf{arphi}_{0} = rac{jI_{0}e^{-jeta r}}{2\pi r} rac{\cos(eta h\cos heta) - \coseta h}{\sin heta} \mathbf{arphi}_{0}$
XV.39	Μέση χρονική τιμή του διανύσματος του Poynting	$\begin{split} P_r(r,\theta) &= \frac{1}{2} \operatorname{Re}(\dot{\mathbf{E}} \times \overset{*}{\mathbf{H}}) = \frac{1}{2} \frac{ \dot{E}_{\theta} ^2}{\eta_0} = \frac{1}{2} \eta_0 \mid \dot{H}_{\phi} \mid^2 = \\ &= \frac{\eta_0 I_0^2}{8\pi^2 r^2} \left[\frac{\cos(\beta h \cos \theta) - \cos \beta h}{\sin \theta} \right]^2 \end{split}$
XV.40	Μέση ακτινοβολούμενη ισχύς	$\begin{split} P_{a} &= \frac{\eta_{0}I_{0}^{2}}{4\pi} \int_{0}^{\pi} \frac{\left[\cos(\beta h\cos\theta) - \cos\beta h\right]^{2}}{\sin\theta} d\theta \\ &= \frac{\eta_{0}I_{0}^{2}}{4\pi} \left\{ C + \ln(2\beta h) - C_{i}(2\beta h) + \frac{1}{2}\sin(2\beta h)[S_{i}(4\beta h) - 2S_{i}(2\beta h)] + \frac{1}{2}\cos(2\beta h)[C + \ln(\beta h) + C_{i}(4\beta h) - 2C_{i}(2\beta h)] \right\} \end{split}$
XV.41	Αντίσταση ακτινοβολίας	$\begin{split} R_a &= \frac{2P_a}{I_0^2} = \frac{\eta_0}{2\pi} \int_0^{\pi} \frac{\left[\cos(\beta h \cos\theta) - \cos\beta h\right]^2}{\sin\theta} d\theta \\ &= \frac{\eta_0}{2\pi} \left\{ C + \ln(2\beta h) - C_i(2\beta h) + \frac{1}{2}\sin(2\beta h)[S_i(4\beta h) - 2S_i(2\beta h)] + \frac{1}{2}\cos(2\beta h)[C + \ln(\beta h) + C_i(4\beta h) - 2C_i(2\beta h)] \right\} \end{split}$
XV.42	Χρήσιμοι μαθηματικοί τύποι για το ολοκληρωτικό ημίτονο $S_i(x)$, συνημίτονο $C_i(x)$ και τη σταθερά του Euler C	$\overline{S_i(x)} = \int_0^x \frac{\sin u}{u} du = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n+1)(2n+1)!}$ $C_i(x) = -\int_x^\infty \frac{\cos u}{u} du = C + \ln x - \int^x \frac{1 - \cos u}{u} du$ $= C + \ln x - \sum_{n=1}^\infty \frac{(-1)^{n+1} x^{2n}}{(2n)(2n)!}$ $C = 0,577216$

Ειδική περίπτωση: μήκος $2h$ της κεραίας περιττό πολλαπλάσιο του μισού μήκους κύματος		
XV.43	Το μαγνητικό διανυσματικό δυναμικό	$\dot{\mathbf{A}} = \dot{A}_{z} \mathbf{z}_{0} = \frac{\mu_{0} I_{0} e^{-j\beta r}}{2\pi\beta r} \frac{\cos\left[\frac{(2n+1)\pi\cos\theta}{2}\right]}{\sin^{2}\theta} \mathbf{z}_{0}$

XV.44	Το ηλεκτρικό πεδίο σε μεγάλες αποστάσεις	$\dot{\mathbf{E}} = \dot{E}_{\theta} \mathbf{\theta}_{0} = \frac{j \eta_{0} I_{0} e^{-j\beta r}}{2\pi r} \frac{\cos\left[\frac{(2n+1)\pi\cos\theta}{2}\right]}{\sin\theta} \mathbf{\theta}_{0}$
XV.45	Το μαγνητικό πεδίο σε μεγάλες αποστάσεις	$\dot{\mathbf{H}} = \dot{H}_{\varphi} \mathbf{\varphi}_{0} = rac{\dot{E}_{ heta}}{\eta_{0}} \mathbf{\varphi}_{0} = rac{jI_{0}e^{-jeta r}}{2\pi r} rac{\cos\left[rac{(2n+1)\pi\cos heta}{2} ight]}{\sin heta} \mathbf{\varphi}_{0}$
XV.46	Η μέση χρονική τιμή του διανύσματος του Poynting	$P_r = \frac{\eta_0 I_0^2}{8\pi^2 r^2} \frac{\cos^2 \left[\frac{(2n+1)\pi\cos\theta}{2}\right]}{\sin^2\theta}$

	Διπολική κεραία $\lambda/2$		
XV.47	Το μαγνητικό διανυσματικό δυναμικό	$\dot{A}_{z}=rac{\mu_{0}I_{0}e^{-jeta r}}{2\pieta r}rac{\cos\left(rac{\pi}{2}\cos heta ight)}{\sin^{2} heta}$	
XV.48	Το ηλεκτρικό πεδίο σε μεγάλες αποστάσεις	$\dot{E}_{\theta} = \frac{j\eta_0 I_0 e^{-j\beta r}}{2\pi r} \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta}$	
XV.49	Το μαγνητικό πεδίο σε μεγάλες αποστάσεις	$\dot{H}_{\varphi} = \frac{jI_{0}e^{-j\beta r}}{2\pi r}\frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta}$	
XV.50	Η μέση χρονική τιμή του διανύσματος του Poynting	$P_r = rac{\eta_0 I_0^2}{8\pi^2 r^2} rac{\cos^2\left(rac{\pi}{2}\cos heta ight)}{\sin^2 heta}$	
XV.51	Μέση ακτινοβολούμενη ισχύς	$P_{a} = \frac{\eta_{0}I_{0}^{2}}{4\pi} \int_{0}^{\pi} \frac{\cos^{2}\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} d\theta = 0,3047 \frac{\eta_{0}I_{0}^{2}}{\pi} = 36,56I_{0}^{2}$	
XV.52	Αντίσταση ακτινοβολίας	$R_a = \frac{\eta_0}{2\pi} \int_0^\pi \frac{\cos^2\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} d\theta = \frac{0,6094}{\pi} \eta_0 = 73,1 \ (\Omega)$	
XV.53	Χρήσιμος μαθηματικός τύπος	$\int_{0}^{\pi} \frac{\cos^{2}\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} d\theta = 1,2188$	
XV.54	Προσεγγιστική τιμή της σύνθετης αντίστασης εισόδου	$Z_{in} = 73, 1 + j42, 5$ (Ω)	
XV.55	Συνάρτηση κατευθυντικότητας	$D(\theta) = 1,641 \frac{\cos^2\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta}$	
XV.56	Κατευθυντικότητα	D = 1,641 = 2,152 (db)	

Πέδιο στην Κοντίνη Ζώνη Γραμμικής Κεραίας

XV.57	Πεδίο στην κοντινή ζώνη γραμμικής κεραίας μήκους 2h (R ₁ , R ₂ : αποστάσεις από τα άκρα της κεραίας)	$\begin{split} \dot{E}_y &= \frac{j\beta I_0}{4\pi\omega\varepsilon_0 y} \bigg[\frac{(z-h)e^{-j\beta R_1}}{R_1} + \frac{(z+h)e^{-j\beta R_2}}{R_2} - \frac{2z\cos(\beta h)e^{-j\beta r}}{r} \bigg] \\ \dot{E}_z &= -\frac{j\beta I_0}{4\pi\omega\varepsilon_0} \bigg[\frac{e^{-j\beta R_1}}{R_1} + \frac{e^{-j\beta R_2}}{R_2} - \frac{2\cos(\beta h)e^{-j\beta r}}{r} \bigg] \end{split}$
		$\dot{H}_{\phi} = -\dot{H}_{x} = -rac{I_{0}}{8\pi j y} \Big[e^{-jeta R_{1}} + e^{-jeta R_{2}} - 2\cos(eta h) e^{-jeta r} \Big]$

XV.58	Το μαγνητικό διανυσματικό δυναμικό (a : ακτίνα κυκλικού βρόχου, r : απόσταση από το κέντρο του βρόχου)	$\dot{\mathbf{A}}=\dot{A}_{arphi}oldsymbol{arphi}_{0}=rac{j\mu_{0}I_{0}eta a^{2}}{4}rac{e^{-jeta r}}{r}\sin hetaoldsymbol{arphi}_{0}$
XV.59	Το ηλεκτρικό πεδίο σε μεγάλες αποστάσεις	$\dot{\mathbf{E}}=\dot{E}_{arphi}oldsymbol{arphi}_{0}=-\eta_{0}H_{ heta}oldsymbol{arphi}_{0}=-j\omega\dot{A}_{arphi}oldsymbol{arphi}_{0}=rac{\omega\mu_{0}I_{0}eta a^{2}}{4}rac{e^{-jeta r}}{r}\sin hetaoldsymbol{arphi}_{0}$
XV.60	Το μαγνητικό πεδίο σε μεγάλες αποστάσεις	$\begin{split} \dot{H}_r &= \frac{1}{\mu_0 r \sin \theta} \Biggl[\frac{\partial (\sin \theta \dot{A}_{\phi})}{\partial \theta} \Biggr] = \frac{j I_0 \beta a^2}{2} \frac{e^{-j\beta r}}{r^2} \cos \theta \\ \dot{H}_{\theta} &= -\frac{1}{\mu_0 r} \frac{\partial (r \dot{A}_{\phi})}{\partial r} = -\frac{I_0 \beta^2 a^2}{4} \frac{e^{-j\beta r}}{r} \sin \theta \\ \dot{H}_{\varphi} &= 0 \end{split}$
XV.61	Μέση χρονική τιμή του διανύσματος του Poynting	$P_{av} = rac{1}{2} rac{\mid \dot{E}_{_{\phi}} \mid^2}{\eta_0} {f r}_0 = rac{1}{2} \eta_0 \mid \dot{H}_{_{ heta}} \mid^2 {f r}_0 = rac{\omega^2 \mu_0^2 I_0^2 eta^2 a^4}{32 \eta_0} rac{\sin^2 heta}{r^2} {f r}_0$
XV.62	Συνολική ακτινοβολούμενη ισχύς	$P_a = rac{\pi \omega^2 \mu_0^2 I_0^2 eta^2 a^4}{12 \eta_0} = rac{\pi \eta_0 eta^4 a^4 I_0^2}{12} = 160 \pi^6 \left(rac{a}{\lambda} ight)^4 I_0^2$
XV.63	Αντίσταση ακτινοβολίας	$R_{a}=rac{2P_{a}}{I_{0}^{2}}=320\pi^{6}igg(rac{a}{\lambda}igg)^{4}=320\pi^{4}igg(rac{S}{\lambda}igg)^{2}$
XV.64	Συνάρτηση κατευθυντικότητας	$D(heta) = 1,5\sin^2 heta$
XV.65	Κατευθυντικότητα βροχοκεραίας	$D=D_{\max}(\theta)=1,5$

Μικρός Κυκλικός Βρόχος (Βροχοκεραία)

Στοιχειοκεραίες

Στοιχειοκεραία δύο στοιχειωδών διπόλων παράλληλων προς τον άξονα z τοποθετημένων στον		
XV.66	αζονα x σε συμμ Απομακρυσμένες θέσεις του πεδίου $(l: μήκος κάθε διπόλου - r_1, r_2:αποστάσεις από τα κέντρα των δύοδιπόλου)$	$\dot{E}_{\theta} = \frac{jI_0 l \omega \mu_0}{4\pi} \sin \theta \left(\frac{e^{-j\beta r_1}}{r_1} + \frac{e^{-j\beta r_2}}{r_2} \right)$
XV.67	Απομακρυσμένες θέσεις του πεδίου (τ είναι η γωνία μεταξύ της ακτινικής διεύθυνσης και του άξονα x , g η απόσταση των διπόλων και \dot{E}_0 η	$\dot{E} = \dot{E}_0 \left(2\cosrac{\psi}{2} ight) = 2\dot{E}_0 \cos\left(rac{\pi g\cos au}{\lambda} ight)$ $\dot{E}_0 = rac{jI_0 l\omega\mu_0 \sin heta e^{-jeta r}}{4\pi r}$
	ένταση του κάθε διπόλου)	

Ομοιόμορφη γραμμική στοιχειοκεραία n στοιχείων		
	Ηλεκτρική πεδιακή ένταση σε ένα απομακρυσμένο σημείο $P(r, \theta, \varphi)$ του	
	πεδίου ($\dot{E_{0}}$ η ένταση κάθε	$\dot{E}=\dot{E}_{0}\left[1+e^{j\psi}+e^{j2\psi}++e^{j(n-1)\psi} ight]$
XV.68	μεμονωμένου στοιχείου, δ η σταθερή διαφορά φάσης μεταξύ διαδοχικών στοιχείων και g η απόσταση μεταξύ διαδοχικών στοιχείων)	$\psi = \beta g \cos \varphi + \delta = \frac{2\pi}{\lambda} g \cos \varphi + \delta$
XV.69	Απόλυτη τιμή του παράγοντα της στοιχειοκεραίας	$f = \left \frac{\dot{E}}{\dot{E}_0}\right = \left \frac{1 - e^{jn\psi}}{1 - e^{j\psi}}\right = \left \frac{\sin(n\psi/2)}{\sin(\psi/2)}\right $
XV.70	Μέγιστη δυνατή τιμή του παράγοντα στοιχειοκεραίας <i>f</i>	$f_{0,\mathrm{max}}=n (\psi=0)$
XV.71	Μέγιστα των πλευρικών λοβών για αρκετά μεγάλο αριθμό στοιχείων	$f_{k,\max} = rac{1}{\left \sinrac{(2\kappa+1)\pi}{2n} ight }$ ($\kappa = 1, 2, 3,$)
XV.72	Μέγιστη τιμή του πρώτου πλευρικού λοβού	$f_{\rm 1,max} = rac{1}{\left \sinrac{3\pi}{2n} ight }$ $f_{ m 1,max} \cong rac{2n}{3\pi} = 0,212n$ (n αρκετά μεγάλο)
XV.73	Χαρακτηριστικά μετωπικής ή ευρύπλευρης στοιχειοκεραίας	$\begin{split} \delta &= 0 \\ f &= f_{\max} \Rightarrow \psi = \beta g \cos \varphi = 0 \Rightarrow \varphi = \frac{\pi}{2} \end{split}$
XV.74	Χαρακτηριστικά ακροπυροδοτικής στοιχειοκεραίας	$\begin{split} \delta &= -\beta g \\ f &= f_{\max} \Rightarrow \psi = \beta g (\cos \varphi - 1) = 0 \Rightarrow \varphi = 0 \end{split}$

ΜΟΝΑΔΕΣ, ΣΤΑΘΕΡΕΣ

Χρησιμές Σταθέρες

	Μέγεθος ή σταθερά	Σύμβολο	Τιμή
B.1	Διηλεκτρική σταθερά του κενού	$arepsilon_0$	$8,854 \times 10^{-12} \ ({ m F/m})$
B.2	Μαγνητική διαπερατότητα του κενού	μ_0	$4\pi imes 10^{-7}~({ m H/m})$
B.3	Φορτίο ηλεκτρονίου	е	$-1,602 \times 10^{-19}$ (C)
B.4	Μάζα ηρεμίας ηλεκτρονίου	m_e	$9,108 imes 10^{-31}(mkg)$
B.5	Μάζα ηρεμίας πρωτονίου	m_p	$1,673\! imes\!10^{-27}~{ m (kg)}$
B.6	Ταχύτητα του φωτός στο κενό	$c=1/\sqrt{\mu_0\varepsilon_0}$	$2,998 imes 10^8 (\mathrm{m/s})$
B. 7	Χαρακτηριστική (κυματική) αντίσταση του κενού	$Z_{\scriptscriptstyle 0} = \eta_{\scriptscriptstyle 0} = \sqrt{\mu_{\scriptscriptstyle 0}/\varepsilon_{\scriptscriptstyle 0}}$	$376,7(\approx 120\pi)$ (Ω)
B.8	Σταθερά του Boltzmann	k	$1,38 \times 10^{-23} (\mathrm{JK}^{-1})$
B. 9	Σταθερά του Planck	h	$6,63\! imes\!10^{-34}~{ m (JS)}$

Προθεματά Μοναδών

ПРОΘЕМА	ΣΥΜΒΟΛΟ	ΜΕΓΕΘΟΣ
tera	Т	10^{12}
giga	G	10^9
mega	М	10^6
kilo	k	10^3
hecto	h	10^2
deka	da	10
deci	d	10^{-1}
centi	с	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}

Προφεματά Μοναδών

ΣΥΜΒΟΛΟ ΜΕΓΕΘΟΥΣ	ΟΝΟΜΑ ΜΕΓΕΘΟΥΣ (ΜΟΝΑΔΑ)	ΣΥΜΒΟΛΟ ΜΟΝΑΔΑΣ	ΔΙΑΣΤΑΣΕΙΣ
M (ή L)	Αλληλεπαγωγή (henry)	Н	ML^2Q^{-2}
L	Αυτεπαγωγή (henry)	Н	ML^2Q^{-2}
R	Αντίσταση (ohm)	Ω	$ML^2T^{-1}Q^{-2}$
φ (ή V)	Βαθμωτό ηλεκτρικό δυναμικό (volt)	V	$ML^2T^2Q^{-1}$
$\phi_{\scriptscriptstyle m}$ (ή $V_{\scriptscriptstyle m}$)	Βαθμωτό μαγνητικό δυναμικό (ampere)	А	$T^{-1}Q$
Р	Διάνυσμα πόλωσης (coulomb/meter ²)	C/m ²	$L^{-2}Q$
S, P	Διάνυσμα Poynting (Watt/ meter ²)	W/m ²	MT^{-3}
ε	Διηλεκτρική σταθερά (farad/meter)	F/m ²	$M^{-1}L^{-3}T^2Q^2$
D	Διηλεκτρική μετατόπιση (coulomb/meter ²)	C/m ²	$L^{-2}Q$
F	Δύναμη (newton)	N ($=10^5$ dynes)	MLT^{-2}
σ	Ειδική αγωγιμότητα (mho/meter)	$\Omega^{-1}/m \ \eta \ S/m$	$M^{-1}L^{-3}TQ^{-2}$
ρ	Ειδική αντίσταση (ohm/meter)	Ω·m	$ML^3T^{-1}Q^2$
W	Ενέργεια (joule)	$J(=10^7 \text{ ergs})$	ML^2T^{-2}
Ι	Ένταση ρεύματος (ampère)	Α	$T^{-1}Q$
$HE\Delta$ (EMF)	Ηλεκτρεγερτική δύναμη (volt)	V	$ML^2T^2Q^{-1}$
Ν	Ηλεκτρική ροή (coulomb)	С	Q
Е	Ηλεκτρική πεδιακή ένταση (volt/meter)	V/m	$MLT^{-2}Q^{-1}$
Q (ή q)	Ηλεκτρικό φορτίο (coulomb)	C (= 3×10^{-9} H Σ M)	Q
Р	Ισχύς (watt)	W (= 10^7 ergs/sec)	ML^2T^{-3}
ω	Κυκλική (ή γωνιακή) συχνότητα (radian/second)	rad/s	T^{-1}
MEΔ (MMF)	Μαγνητεγερτική δύναμη (ampère·turn)	A (= $4\pi \times 10^{-1}$ gilberts)	$T^{-1}Q$
Р	Μαγνητική αγωγιμότητα (henry)	Н	ML^2Q^{-2}
R	Μαγνητική αντίσταση (1/henry)	H^{-1}	$M^{-1}L^{-2}Q^2$
Α	Μαγνητικό διανυσματικό δυναμικό (weber/meter)	Wb/m	$MLT^{-1}Q^{-1}$
μ	Μαγνητική διαπερατότητα (henry/meter)	H/m	MLQ^{-2}
В	Μαγνητική επαγωγή (weber/meter ² ή tesla)	Wb/m ² η T (= 10 ⁴ gauss)	$MT^{-1}Q^{-1}$
Н	Μαγνητική πεδιακή ένταση (ampère/meter)	A/m (= $4\pi \times 10^{-3}$ oersteds)	$L^{-1}T^{-1}Q$
Φ	Μαγνητική ροή (weber)	Wb ($=10^8$ maxwells)	$ML^2T^{-1}Q^{-1}$
Q_m (ý q_m)	Μαγνητικό φορτίο (ampère·meter)	A·m	$L T^{-1}Q$
М	Μαγνήτιση (ampere/meter)	A/m	$L^{-1}T^{-1}Q$
λ	Μήκος κύματος (meter)	m	L
Ψ (ή $\lambda_{_m}$)	Πεπλεγμένη μαγνητική ροή (weber turn)	Wb	$M\!L^{\!2}T^{-1}Q^{-1}$
a	Σταθερά απόσβεσης (neper/meter)	Np/m	L^{-1}
Ζ	Σύνθετη αντίσταση (ohm)	Ω	$M\!L^2T^{-1}Q^{-2}$
f	Συχνότητα (hertz)	Hz	T^{-1}
β	Φασική σταθερά (radian/meter)	rad/m	L^{-1}
С	Χωρητικότητα (farad)	F	$M^{-1}L^{-2}T^2Q^2$

Ι ΤΕΛΕΣΤΕΣ, ΤΑΥΤΟΤΗΤΕΣ, ΠΑΡΑΓΩΓΟΙ, ΣΕΙΡΕΣ, ΔΙΑΦΟΡΟΙ ΤΥΠΟΙ

τα Τρία Σύνηθη Συστηματά Σύντεταγμένων

- (α) Καρτεσιανό σύστημα συντεταγμένων x, y, z. (σχήμα (α))
- (β) Σύστημα κυλινδρικών συντεταγμένων ρ , φ , z. (σχήμα (β))
- (γ) Σύστημα σφαιρικών συντεταγμένων r, θ , φ . (σχήμα (γ)).

ΟΙ ΠΡΟΒΟΛΕΣ ΤΩΝ ΜΟΝΑΔΙΑΙΩΝ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΑ ΤΡΙΑ ΣΥΣΤΗΜΑΤΑ

		К	ΑΡΤΕΣΙΑΝΟ			ΚΥΛΙΝΔΡΙΙ	KO		ΣΦΑΙΡΙΚΟ	
		\mathbf{x}_0	\mathbf{y}_{0}	\mathbf{z}_0	$\mathbf{\rho}_0$	$\mathbf{\phi}_0$	\mathbf{z}_0	\mathbf{r}_0	$\mathbf{\Theta}_{0}$	$\mathbf{\Phi}_0$
EΣ.	\mathbf{x}_0	1	0	0	$\cos \varphi$	$-\sin \varphi$	0	$\sin\theta\cos\varphi$	$\cos\theta\cos\varphi$	$-\sin \varphi$
ΓL	\mathbf{y}_0	0	1	0	$\sin \varphi$	$\cos \varphi$	0	$\sin\theta\sin\varphi$	$\cos\theta\sin\varphi$	$\cos \varphi$
KA	\mathbf{z}_0	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0
ΔP.	$\mathbf{\rho}_0$	$\cos arphi$	$\sin \varphi$	0	1	0	0	$\sin \theta$	$\cos heta$	0
VIN	$\mathbf{\Phi}_0$	$-\sin \varphi$	$\cos \varphi$	0	0	1	0	0	0	1
KY,	\mathbf{z}_0	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0
<u> </u>	\mathbf{r}_0	$\sin\theta\cos\varphi$	$\sin\theta\sin\varphi$	$\cos \theta$	$\sin \theta$	0	$\cos \theta$	1	0	0
IIII	$\boldsymbol{\theta}_{0}$	$\cos\theta\cos\varphi$	$\cos\theta\sin\varphi$	$-\sin\theta$	$\cos \theta$	0	$-\sin\theta$	0	1	0
ΣΦA	$\boldsymbol{\varphi}_{0}$	$-\sin \varphi$	$\cos \varphi$	0	0	1	0	0	0	1

ΜΕΙΑΙΡΟΠΗ ΖΥΝΙΕΙΑΙ ΜΕΝΩΝ ΣΙΑ ΤΡΙΑ ΖΥΣΤΗΜΑΙΑ				
		ΚΥΛΙΝΔΡΙΚΟ	ΣΦΑΙΡΙΚΟ	ΚΑΡΤΕΣΙΑΝΟ
ANO	x	$ ho\cos{arphi}$	$r\sin heta\cosarphi$	x
TEZI	y	$ ho\sin arphi$	$r\sin\theta\sin\varphi$	y
KAF	z	z	$r\cos heta$	z
IKO	ρ	ρ	$r\sin heta$	$\sqrt{x^2+y^2}$
VINAP	arphi	arphi	arphi	$\arctan(y / x)$
KY/	z	z	$r\cos\theta$	z
ζΟ	r	$(ho / \sin heta)$	r	$\sqrt{x^2 + y^2 + z^2}$
AIPIK	heta	$\arctan(ho/z)$	θ	$\arctan\left(\sqrt{x^2+y^2}/z ight)$
Σđ	arphi	arphi	φ	$\arctan(y / x)$

Μετρικοι Σύντελεστές και Απειροστές Ποσοτητές

Γενικό	Καρτεσιανό	Κυλινδρικό	Σφαιρικό
u_1	x	ρ	r
u_2	y	φ	heta
u_3	z	z	arphi
$g_{11}(h_1^2)$	1	1	1
$g_{22}(h_2^2)$	1	$ ho^2$	r^2
$g_{33}(h_3^2)$		1	$r^2 \sin^2 heta$
$g^{1/2}$	1	ρ	$r^2\sin heta$
dl	$dx\mathbf{x}_{0} + dy\mathbf{y}_{0} + dz\mathbf{z}_{0}$	$d ho \mathbf{p}_0 + ho darphi \mathbf{\phi}_0 + dz \mathbf{z}_0$	$dr\mathbf{r}_{0} + rd\theta\mathbf{\theta}_{0} + r\sin\theta d\varphi \mathbf{\varphi}_{0}$
$(dl)^2$	$(dx)^2 + (dy)^2 + (dz)^2$	$(d ho)^2+ ho^2(darphi)^2+(dz)^2$	$(dr)^2 + r^2 (d\theta)^2 + r^2 \sin^2 \theta (d\varphi)^2$
dS_1	dydz	ho darphi dz	$r^2\sin\theta d\theta d\varphi$
dS_2	dxdz	dzd ho	$r\sin heta darphi dr$
dS_3	dxdy	ho d ho darphi	$rdrd\theta$
dV	dxdydz	ho d ho darphi dz	$r^2\sin heta dr d heta darphi$

		ΚΥΛΙΝΔΡΙΚΟ	ΣΦΑΙΡΙΚΟ	ΚΑΡΤΕΣΙΑΝΟ
07	A_{x}	$A_{_{ ho}}\cosarphi-A_{_{arphi}}\sinarphi$	$A_{\!_{r}}\sin\theta\cos\varphi + A_{\!_{\theta}}\cos\theta\cos\varphi - A_{\!_{\varphi}}\sin\varphi$	A_x
ΡΤΕΣΙΑΙ	A_{y}	$A_{\!_{\rm T}}\sin\varphi + A_{\!_\varphi}\cos\varphi$	$A_{\!_{\!$	A_{y}
KAI	A_{z}	A_{z}	$A_{_r}\cos heta - A_{_ heta}\sin heta$	A_{z}
KYAINAPIKO	A_{ρ}	$A_{ ho}$	$A_r \sin heta + A_ heta \cos heta$	$A_{_{x}}\cosarphi+A_{_{y}}\sinarphi$
	$A_{\!\varphi}$	A_{arphi}	A_{arphi}	$-A_{\!x}\sin\varphi + A_{\!y}\cos\varphi$
	A_{z}	A_{z}	$A_r \cos heta - A_ heta \sin heta$	A_{ϵ} ,
	A_{r}	$A_{ ho}\sin heta+A_{ m z}\cos heta$	A_r	$A_x \sin \theta \cos \varphi + A_y \sin \theta \sin \varphi + A_z \cos \theta$
AIPIKC	$A_{\!\theta}$	$A_{ ho}\cos heta-A_{z}\sin heta$	$A_{ heta}$	$A_{\!\scriptscriptstyle x}\cos\theta\cos\varphi + A_{\!\scriptscriptstyle y}\cos\theta\sin\varphi - A_{\!\scriptscriptstyle z}\sin\theta$
Σ	$A_{\!\varphi}$	A_{arphi}	A_{arphi}	$-A_{\!x}\sin\varphi+A_{\!y}\cos\varphi$

Προβολές Ενός Διανύςματος στα Τρία Συστηματά

ΟΙ ΤΕΛΕΣΤΕΣ ∇ , ∇ , ∇ × ΚΑΙ ∇^2 ΣΕ ΓΕΝΙΚΕΣ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ (u, v, w)

ΣΥΣΤΗΜΑ	ΜΕΤΑΒΛΗΤΕΣ	ΜΟΝΑΔΙΑΙΑ ΔΙΑΝΥΣΜΑΤΑ	ΣΥΝΤΕΛΕΣΤΕΣ ΚΛΙΜΑΚΑΣ		
ΣΥΝΤΕΤΑΓΜΕΝΩΝ	$u \ v \ w$	\mathbf{u}_0 $\mathbf{\upsilon}_0$ \mathbf{w}_0	$h_1 \hspace{0.1in} h_2 \hspace{0.1in} h_3$		
ΚΑΡΤΕΣΙΑΝΟ	$x \ y \ z$	$\mathbf{x}_0 \ \mathbf{y}_0 \ \mathbf{z}_0$	1 1 1		
ΚΥΛΙΝΔΡΙΚΟ	ho arphi z	$\mathbf{ ho}_0$ $\mathbf{\phi}_0$ \mathbf{z}_0	1 r 1		
ΣΦΑΙΡΙΚΟ	$r \hspace{0.1in} heta \hspace{0.1in} arphi$	$\mathbf{r}_{_{0}}$ $\mathbf{ heta}_{_{0}}$ $\mathbf{arphi}_{_{0}}$	$1 r r \sin heta$		
ΔΙΑΝΥΣΜΑ	$\mathbf{A} = A_u \mathbf{u}_0 + A_v \mathbf{v}_0 + A_w \mathbf{w}_0$				
ΔΙΑΦΟΡΙΚΟ ΔΙΑΝΥΣΜΑ	$d\mathbf{l} = h_1 du \mathbf{u}_0 + h_2 dv \mathbf{v}_0 + h_2$	$_{3}dw\mathbf{w}_{0}$			
ΔΙΑΦΟΡΙΚΟΣ ΟΓΚΟΣ	$dV = h_1 h_2 h_3 du dv dw$				
<u>ΚΛΙΣΗ</u>					
$\nabla V \equiv gradV = \frac{1}{h_1} \frac{\partial V}{\partial u} \mathbf{u}_0 +$	$-rac{1}{h_2}rac{\partial V}{\partial v}\mathbf{v}_0+rac{1}{h_3}rac{\partial V}{\partial w}\mathbf{w}_0$				
ΑΠΟΚΛΙΣΗ					
$\nabla \cdot \mathbf{A} \equiv div\mathbf{A} = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial}{\partial u} \right) (h_1 h_2 h_3 h_3 h_3 h_3 h_3 h_3 h_3 h_3 h_3 h_3$	$h_2h_3A_u)+rac{\partial}{\partial v}(h_1h_3A_v)+rac{\partial}{\partial w}$	$(h_1h_2A_w)\Big)$			
ΣΤΡΟΦΗ					
$\nabla \times \mathbf{A} \equiv curl\mathbf{A} \equiv rot\mathbf{A} = \frac{1}{h_2h_3} \left(\frac{\partial(h_3A_w)}{\partial v} - \frac{\partial(h_2A_v)}{\partial w} \right) \mathbf{u}_0 + \frac{1}{h_1h_3} \left(\frac{\partial(h_1A_u)}{\partial w} - \frac{\partial(h_3A_w)}{\partial u} \right) \mathbf{v}_0 + \frac{1}{h_1h_3} \left(\frac{\partial(h_2A_v)}{\partial u} - \frac{\partial(h_1A_u)}{\partial v} \right) \mathbf{w}_0$					
ΛΑΠΛΑΣΙΑΝΗ					
$\nabla^2 V = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u} \left(\frac{h_2 h_3}{h_1} \frac{\partial V}{\partial u} \right) + \frac{\partial}{\partial v} \left(\frac{h_1 h_3}{h_2} \frac{\partial V}{\partial v} \right) + \frac{\partial}{\partial w} \left(\frac{h_1 h_2}{h_3} \frac{\partial V}{\partial w} \right) \right]$					
$ abla^2 {f A} = abla (abla \cdot {f A}) - abla imes abla imes {f A}$ (σε κάθε σύστημα συντεταγμένων)					
$ abla^2 \mathbf{A} = (abla^2 A_x) \mathbf{x}_0 + (abla^2 A_y) \mathbf{y}_0 + (abla^2 A_z) \mathbf{z}_0$ (καρτεσιανό σύστημα συντεταγμένων)					

Χρησιμές Ολοκληρωτικές Τλυτοτητές

OI TEAESTES ∇ , ∇ , ∇ × kai ∇^2 Sta Tpia Systhmata Syntetagmenon

Σύστημα Ορθογώνιων Συντεταγμένων (x, y, z)

I.1	$ abla V = rac{\partial V}{\partial x} \mathbf{x}_0 + rac{\partial V}{\partial y} \mathbf{y}_0 + rac{\partial V}{\partial z} \mathbf{z}_0$
I.2	$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$
I.3	$ abla imes \mathbf{A} = iggl(rac{\partial A_z}{\partial y} - rac{\partial A_y}{\partial z} iggr) \mathbf{x}_0 + iggl(rac{\partial A_x}{\partial z} - rac{\partial A_z}{\partial x} iggr) \mathbf{y}_0 + iggl(rac{\partial A_y}{\partial x} - rac{\partial A_x}{\partial y} iggr) \mathbf{z}_0$
I.4	$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$
1.5	$\nabla^2 \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla \times \nabla \times \mathbf{A} = (\nabla^2 A_x) \mathbf{x}_0 + (\nabla^2 A_y) \mathbf{y}_0 + (\nabla^2 A_z) \mathbf{z}_0$

Σύστημα Κυλινδρικών Συντεταγμένων (ρ, φ, z)

I.6	$ abla V = rac{\partial V}{\partial ho} oldsymbol{ ho}_0 + rac{1}{r} rac{\partial V}{\partial arphi} oldsymbol{arphi}_0 + rac{\partial V}{\partial z} oldsymbol{z}_0$
I.7	$ abla \cdot \mathbf{A} = rac{1}{ ho} rac{\partial(ho A_r)}{\partial ho} + rac{1}{ ho} rac{\partial A_{arphi}}{\partial arphi} + rac{\partial A_z}{\partial z}$
I.8	$ abla imes \mathbf{A} = \left(rac{1}{ ho} rac{\partial A_z}{\partial arphi} - rac{\partial A_{arphi}}{\partial z} ight) \mathbf{ ho}_0 + \left(rac{\partial A_{ ho}}{\partial z} - rac{\partial A_z}{\partial ho} ight) \mathbf{arphi}_0 + rac{1}{ ho} \left[rac{\partial (ho A_{arphi})}{\partial ho} - rac{\partial A_{ ho}}{\partial \phi} ight] \mathbf{z}_0$

I.9	$\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \varphi^2} + \frac{\partial^2 V}{\partial z^2}$
I.10	$\nabla^{2}\mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla \times \nabla \times \mathbf{A} = \left(\nabla^{2}A_{\rho} - \frac{2}{\rho^{2}}\frac{\partial A_{\varphi}}{\partial \varphi} - \frac{A_{\rho}}{\rho^{2}}\right)\mathbf{\rho}_{0} + \left(\nabla^{2}A_{\varphi} + \frac{2}{\rho^{2}}\frac{\partial A_{\rho}}{\partial \varphi} - \frac{A_{\varphi}}{\rho^{2}}\right)\mathbf{\varphi}_{0} + (\nabla^{2}A_{z})\mathbf{z}_{0}$

Σύστημα Σφαιρικών Συντεταγμένων (r, θ, φ)

I.11	$ abla V = rac{\partial V}{\partial r} \mathbf{r}_{_{0}} + rac{1}{r} rac{\partial V}{\partial heta} \mathbf{ heta}_{_{0}} + rac{1}{r \sin heta} rac{\partial V}{\partial arphi} oldsymbol{arphi}_{_{0}}$
I.12	$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \left[\frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \frac{\partial A_\varphi}{\partial \varphi} \right]$
I.13	$\nabla \times \mathbf{A} = \frac{1}{r \sin \theta} \left[\frac{\partial (\sin \theta A_{\varphi})}{\partial \theta} - \frac{\partial A_{\theta}}{\partial \varphi} \right] \mathbf{r}_{0} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \varphi} - \frac{\partial (rA_{\varphi})}{\partial r} \right] \mathbf{\theta}_{0} + \frac{1}{r} \left[\frac{\partial (rA_{\theta})}{\partial r} - \frac{\partial A_{r}}{\partial \theta} \right] \mathbf{\varphi}_{0}$
I.14	$\nabla^2 V = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \varphi^2}$
	$\nabla^{2}\mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla \times \nabla \times \mathbf{A} = \left(\nabla^{2}A_{r} - \frac{2}{r^{2}}\frac{\partial A_{\theta}}{\partial \theta} - \frac{2\cot\theta}{r^{2}}A_{\theta} - \frac{2}{r^{2}\sin\theta}\frac{\partial A_{\varphi}}{\partial \varphi} - \frac{2}{r^{2}A_{r}}\right)\mathbf{r}_{0}$
I.15	$+ \left(\nabla^2 A_{\!\theta} + \frac{2}{r^2} \frac{\partial A_{\!r}}{\partial \theta} - \frac{2 \cot \theta}{r^2 \sin \theta} \frac{\partial A_{\!\varphi}}{\partial \varphi} - \frac{1}{r^2 \sin^2 \theta} A_{\!\theta} \right) \! \boldsymbol{\theta}_0$
	$+igg(abla^2 A_arphi + rac{2}{r^2 \sin heta} rac{\partial A_r}{\partial arphi} + rac{2 \cot heta}{r^2 \sin heta} rac{\partial A_ heta}{\partial arphi} - rac{1}{r^2 \sin^2 heta} A_arphi igg) oldsymbol{arphi}_0$

Διανυσματικές Ταυτοτητές

I.16	$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$
I.17	$\mathbf{A} imes \mathbf{B} = -\mathbf{B} imes \mathbf{A}$
I.18	$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C} = (\mathbf{C} \times \mathbf{A}) \cdot \mathbf{B}$
I.19	$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$
I.20	$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} \times (\mathbf{C} \times \mathbf{D})$
I.21	$\nabla \times (\nabla U) = 0$
1.22	$\nabla \cdot (\nabla \times \mathbf{A}) = 0$
I.23	$ abla \cdot (\mathbf{A} + \mathbf{B}) = abla \cdot \mathbf{A} + abla \cdot \mathbf{B}$
I.24	$\nabla (U+V) = \nabla U + \nabla V$
1.25	$\nabla \times (\mathbf{A} + \mathbf{B}) = \nabla \times \mathbf{A} + \nabla \times \mathbf{B}$
1.26	$(\nabla \cdot \nabla)\mathbf{A} = \nabla^2 \mathbf{A} = \nabla^2 A_x \mathbf{x}_0 + \nabla^2 A_y \mathbf{y}_0 + \nabla^2 A_z \mathbf{z}_0$
I.27	$\nabla \cdot (\nabla U) = (\nabla \cdot \nabla)U = \nabla^2 U$
I.28	$\nabla \cdot (UV) = (\nabla U)V + U(\nabla V)$

1.29	$\nabla \cdot (U\mathbf{A}) = (\nabla U) \cdot \mathbf{A} + U(\nabla \cdot \mathbf{A})$
I.30	$\nabla \times (U\mathbf{A}) = (\nabla U) \times \mathbf{A} + U(\nabla \times \mathbf{A})$
I.31	$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = (\nabla \times \mathbf{A}) \cdot \mathbf{B} - \mathbf{A} \cdot (\nabla \times \mathbf{B})$
I.32	$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A})$
I.33	$ abla (abla \cdot {f A}) = abla imes (abla imes {f A}) + abla^2 {f A}$
I.34	$ abla imes (abla imes {f A}) = abla (abla \cdot {f A}) - abla^2 {f A}$
1.35	$ abla imes \mathbf{r} = 0$, $ abla^2(1/r) = 0$, $ abla \cdot \mathbf{r} = 3$ $(\mathbf{r} = x\mathbf{x}_0 + y\mathbf{y}_0 + z\mathbf{z}_0)$
I.36	$\iiint_V \nabla \cdot \mathbf{A} dV = \oiint_S \mathbf{A} \cdot d\mathbf{S}$
I.3 7	$\iiint_V \nabla f dV = \oiint_S f d\mathbf{S}$
I.38	$\iiint_V \nabla \times \mathbf{A} dV = - \oiint_S \mathbf{A} \times d\mathbf{S}$
I.39	$\iiint_V (\nabla f \cdot \nabla g + f \nabla^2 g) dV = \oiint_S f \nabla g \cdot d\mathbf{S}$
I.40	$\iiint_V (f\nabla^2 g - g\nabla^2 f) dV = \oiint_S (f\nabla g - g\nabla f) \cdot d\mathbf{S}$
I.41	$\iint_{S} \nabla f \times d\mathbf{S} = \oint_{C} f \cdot d\mathbf{l}$
I.42	${\displaystyle \iint_{S} abla imes {f A} \cdot d{f S} = \oint_{C} {f A} \cdot d{f l}}$

Τριγωνομετρικές Ταυτοτητές

I.43	$\tan A = \frac{\sin A}{\cos A}$
I.44	$\cot A = \frac{1}{\tan A}$
I.45	$\sec A = \frac{1}{\cos A}$
I.46	$\csc A = \frac{1}{\sin A}$
I.47	$\sin^2 A + \cos^2 A = 1$
I.48	$1 + \tan^2 A = \sec^2 A$
I.49	$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
1.50	$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
I.51	$2\sin A \sin B = \cos(A - B) - \cos(A + B)$
1.52	$2\sin A\cos B = \sin(A+B) + \sin(A-B)$
1.53	$2\cos A\cos B = \cos(A+B) + \cos(A-B)$
I.54	$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$

1.55	$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$
1.56	$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
I.57	$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$
I.58	$\cos(A\pm90^\circ)=\mp\sin A$
I.59	$\sin(A\pm90^\circ)=\pm\cos A$
I.60	$\tan(A\pm90^\circ)=-\cot A$
I.61	$\sin 2A = 2\sin A\cos A$
I.62	$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$
1.63	$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
I.64	$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$
1.65	$\sin A = \frac{e^{jA} - e^{-jA}}{2j}$
I.66	$\cos A = \frac{e^{jA} + e^{-jA}}{2}$
I.67	$e^{jA} = \cos A + j \sin A$ (Ταυτότητα του Euler)
I.68	$\pi = 3,\!14159265358979$
I.69	$1 \ rad = 57,296^{\circ}$

ΥΠΕΡΒΟΛΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

1.70	$\sinh x = \frac{e^x - e^{-x}}{2}$
I.71	$\cosh x = \frac{e^x + e^{-x}}{2}$
1.72	$\tanh x = \frac{\sinh x}{\cosh x}$
1.73	$\coth x = \frac{1}{\tanh x}$
I.74	$\csc hx = \frac{1}{\sinh x}$
1.75	$\operatorname{sec} \operatorname{h} x = \frac{1}{\cosh x}$
1.76	$\sin jx = j \sinh x$
I.77	$\cos jx = \cosh x$
I.78	$\sinh jx = j\sin x$
I.79	$\cosh jx = \cos x$

1.80	$\sinh(x\pm y) = \sinh x \cosh y \pm \cosh x \sinh y$
I.81	$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$
I.82	$\sinh(x \pm jy) = \sinh x \cos y \pm j \cosh x \sin y$
I.83	$\cosh(x \pm jy) = \cosh x \cos y \pm j \sinh x \sin y$
I.84	$\tanh(x \pm jy) = \frac{\sinh 2x}{\cosh 2x + \cos 2y} \pm j \frac{\sin 2y}{\cosh 2x + \cos 2y}$
I.85	$\cosh^2 x - \sinh^2 x = 1$
I.86	$\operatorname{sec} h^2 x + \tanh^2 x = 1$
I.8 7	$\sin(x \pm jy) = \sin x \cosh y \pm j \cos x \sinh y$
1.88	$\cos(x \pm jy) = \cos x \cosh y \mp j \sin x \sinh y$

Λογαριωμικές Ταυότητες

I.89	$\log xy = \log x + \log y$
I.90	$\log \frac{x}{y} = \log x - \log y$
I.91	$\log x^n = n \log x$
I.92	$\log_{10} x = \log x$
1.93	$\log_e x = \ln x$ (φυσικός λογάριθμος)
I.94	Av $ x \ll 1$, $\ln(1+x) \approx x$

$$\label{eq:Harapactic} \begin{split} & \mathbf{\Pi} \mathbf{A} \mathbf{P} \mathbf{A} \mathbf{\Gamma} \mathbf{\Omega} \mathbf{\Gamma} \mathbf{O} \mathbf{I} \\ & (\mathbf{Av} \ U = U(x), \ V = V(y) \ \text{kal} \ a \ \text{stable} \mathbf{e} \mathbf{D} \mathbf{e} \mathbf{e} \mathbf{D} \mathbf{e} \mathbf{e} \mathbf{A} \mathbf{e} \end{split}$$

1.95	$\frac{d}{dx}(aU) = a\frac{dU}{dx}$
1.96	$\frac{d}{dx}(UV) = U\frac{dV}{dx} + V\frac{dU}{dx}$
I.97	$\frac{d}{dx}\left[\frac{U}{V}\right] = \frac{V\frac{dU}{dx} - U\frac{dV}{dx}}{V^2}$
1.98	$\frac{d}{dx}(aU^n)=naU^{n-1}$
1.99	$rac{d}{dx} \mathrm{log}_a U = rac{\mathrm{log}_a e}{U} rac{dU}{dx}$
I.100	$\frac{d}{dx}\ln U = \frac{1}{U}\frac{dU}{dx}$
I.101	$rac{d}{dx}a^{\scriptscriptstyle U}=a^{\scriptscriptstyle U}\ln arac{dU}{dx}$

I.102	$rac{d}{dx}e^{\scriptscriptstyle U}=e^{\scriptscriptstyle U}rac{dU}{dx}$
I.103	$rac{d}{dx}U^{\scriptscriptstyle V} = VU^{\scriptscriptstyle V-1}rac{dU}{dx} + U^{\scriptscriptstyle V}\ln Urac{dV}{dx}$
I.104	$\frac{d}{dx}\sin U = \cos U \frac{dU}{dx}$
I.105	$\frac{d}{dx}\cos U = -\sin U \frac{dU}{dx}$
I.106	$\frac{d}{dx}\tan U = \sec^2 U \frac{dU}{dx}$
I.107	$\frac{d}{dx}\sinh U = \cosh U \frac{dU}{dx}$
I.108	$\frac{d}{dx}\cosh U = \sinh U \frac{dU}{dx}$
I.109	$\frac{d}{dx}\tanh U = \operatorname{sec} h^2 U \frac{dU}{dx}$

ΣΕΙΡΕΣ (z: μιγαδικός, x: πραγματικός)	
I.110	$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \ldots + z^{\nu} + \ldots, \qquad z < 1$
I.111	$(1+z)^{a} = 1 + \binom{a}{1}z + \binom{a}{2}z^{2} + \ldots + \binom{a}{\nu}z^{\nu} + \ldots, z < 1, \binom{a}{\nu} = \frac{a(a-1)\dots(a-\nu+1)}{\nu!}$
I.112	$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{2 \cdot 4}x^2 + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6}x^3 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8}x^4 + \dots, x < 1$
I.113	$\frac{1}{1+x^2} = 1 - 2x + 3x^2 - 4x^3 + \ldots + (-1)^{\nu}(\nu+1)x^{\nu}, x < 1$
I.114	$\Sigma \exp \acute{\alpha} \text{ Taylor: } \sigma(x) = \sigma(x_0) + \sigma'(x_0)(x - x_0) + \frac{1}{2!}\sigma''(x_0)(x - x_0)^2 + \ldots + \frac{1}{\nu !}\sigma^{(\nu)}(x)(x - x_0)^{\nu} + \ldots$
-	όταν $\lim_{ u ightarrow R_{ u}} R_{ u} = 0$
I.115	$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + (-1)^{\nu} \frac{z^{2\nu+1}}{(2\nu+1)!} + \dots, z < \infty$
I.116	$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots + (-1)^{\nu} \frac{z^{2\nu}}{(2\nu)!} + \dots, z < \infty$
I.117	$\tan z = z + \frac{z^3}{3} + \frac{2z^5}{15} + \frac{17z^7}{315} + \dots, z < \frac{\pi}{2}$
I.118	$\sin^{-1} z = z + \frac{1}{2} \frac{z^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{z^5}{5} + \dots + \frac{1 \cdot 3 \dots (2\nu - 1)}{2 \cdot 4 \dots (2\nu)} \frac{z^{2\nu + 1}}{2\nu + 1}, z < 1$
I.119	$\tan^{-1} z = z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} + \dots + (-1)^{\nu} \frac{z^{2\nu+1}}{2\nu+1}, z < 1$
I.120	$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \ldots + \frac{z^{\nu}}{\nu!} + \ldots, \qquad z < 1$
I.121	$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{\nu} \frac{x^{\nu}}{\nu} + \dots , -1 < x \le 1$
I.122	$\ln\left(\frac{1+z}{1-z}\right) = 2\left(z + \frac{z^3}{3} + \frac{z^5}{5} + \frac{z^7}{7} + \dots + \frac{z^{2\nu+1}}{2\nu+1} + \dots\right), \qquad z < 1$

I.123	$\sinh z = z + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots + \frac{z^{2\nu+1}}{(2\nu+1)!} + \dots, z < \infty$
I.124	$\Sigma \epsilon \mu \dot{\alpha} \text{ Fourier:} f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{c} + a_2 \cos \frac{2\pi x}{c} + \dots + b_1 \sin \frac{\pi x}{c} + b_2 \sin \frac{2\pi x}{c} + \dots$ $a_m = \frac{1}{c} \int_{-c}^{c} f(x) \cos \frac{m\pi x}{c} dx, b_m = \frac{1}{c} \int_{-c}^{c} f(x) \sin \frac{m\pi x}{c} dx, -c < x < c$

Μήκος καμπύλης, Εμβάλου Επιφανείας, Ογκός, Καμπυλοτητά

1.125	<u>Μήκος τόξου καμπύλης</u> : αν $x = x(t)$, $y = y(t)$, $z = z(t)$ τότε $L = \int_{t}^{t_2} \sqrt{x'^2 + y'^2 + z'^2} dt$
	Εάν C επίπεδη καμπύλη και η εξίσωσή της:
	$\rho = \rho(\theta) \dot{\mathfrak{\eta}} \theta = \theta(\rho) : \ \ L = \int_{\theta_1}^{\theta_2} \sqrt{\rho'^2 + \rho^2} d\theta \dot{\mathfrak{\eta}} L = \int_{\rho_1}^{\rho_2} \sqrt{1 + \rho^2 \theta'^2} d\rho$
	Γενικά: $L = \int ds = \int \sqrt{(dx)^2 + (dy)^2 + (dz)^2}$
I.126	<u>Εμβαδόν επίπεδου χωρίου</u> : $E = \iint_{S} dE$, <u>Εμβαδόν τομέα</u> : $E = \frac{1}{2} \int_{\theta_{1}}^{\theta_{2}} \rho^{2} d\theta$,
	<u>Εμβαδόν καμπύλης επιφάνειας</u> : $E = \iint_{S} \sqrt{1 + {\sigma_x}^2 + {\sigma_y}^2} dx dy$
	$(z = \sigma(x, y), S:$ προβολή της E επί του Oxy)
1 1 2 7	Όγκος στερεού: $V= {\int}{\int}{\int}_{\Omega} dV$
1.127	Όγκος στερεού εκ περιστροφής: $V=\pi\int y^2dx$
I.128	<u>Καμπυλότητα επίπεδης καμπύλης</u> :
	Av $y = \sigma(x) \Rightarrow \kappa = \frac{y^{n-1}}{(1+y'^2)^{3/2}}, \text{av } x = x(t), y = y(t), \kappa = \frac{x y^{n-1} - x^n y^n}{(x'^2 + y'^2)^{3/2}}$

Π

ΑΟΡΙΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

Στοιχειώδη Ολοκληρωματα

II.1	$\int x^a dx = \frac{x^{a+1}}{a+1}, a \neq -1$
II.2	$\int \frac{dx}{x} = \ln x , x \neq 0$
II.3	$\int \frac{u'(x)}{u(x)} dx = \ln u(x)$
II.4	$\int e^x dx = e^x$
11.5	$\int a^x dx = \frac{a^x}{\ln a}, 0 < a \neq 1$
II.6	$\int \frac{dx}{1+x^2} = \tan^{-1} x$
II.7	$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right), x \neq \pm 1$
II.8	$\int \frac{dx}{\sqrt{1 - x^2}} = \sin^{-1} x , \qquad -1 < x < 1$
II.9	$\int \frac{dx}{\sqrt{x^2 - 1}} = \ln\left(x + \sqrt{x^2 - 1}\right), \qquad x < -1 \acute{\eta} x > 1$
II.10	$\int \frac{dx}{\sqrt{x^2+1}} = \ln\left(x + \sqrt{x^2+1}\right)$
П.11	$\int \cos x dx = \sin x$
II.12	$\int \sin x dx = -\cos x$
II.13	$\int \tan x dx = -\ln(\cos x)$
II.14	$\int \frac{dx}{\tan x} = \ln(\sin x)$
II.15	$\int \frac{dx}{\cos^2 x} = \tan x$
II.16	$\int \frac{dx}{\sin^2 x} = -\frac{1}{\tan x}$

II.17	$\int \sinh x dx = \cosh x$
II.18	$\int \cosh x dx = \sinh x$

ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΕ ax + b $(a \neq 0)$

II.19	$\int (ax+b)^c dx = \frac{(ax+b)^{c+1}}{a(c+1)}, \qquad c \neq -1$
II.20	$\int \frac{dx}{ax+b} = \frac{\ln(ax+b)}{a}$
II.21	$\int x(ax+b)^{c} dx = \frac{(ax+b)^{c+2}}{a^{2}(c+2)} - \frac{b(ax+b)^{c+1}}{a^{2}(c+1)}, \qquad c \neq -1, -2$
II.22	$\int \frac{xdx}{ax+b} = \frac{x}{a} - \frac{b}{a^2}\ln(ax+b)$
II.23	$\int \frac{xdx}{(ax+b)^2} = \frac{b}{a^2(ax+b)} + \frac{1}{a^2}\ln(ax+b)$
II.24	$\int x^2 (ax+b)^c dx = \frac{1}{a^3} \left[\frac{(ax+b)^{c+3}}{c+3} - 2b \frac{(ax+b)^{c+2}}{c+2} + b^2 \frac{(ax+b)^{c+1}}{c+1} \right], \qquad c \neq -1, -2, -3$
11.25	$\int \frac{x^2 dx}{ax+b} = \frac{1}{a^3} \left[\frac{1}{2} (ax+b)^2 - 2b(ax+b) + b^2 \ln(ax+b) \right]$
11.26	$\int \frac{x^2 dx}{(ax+b)^2} = \frac{1}{a^3} \left[(ax+b) - 2b \ln(ax+b) - \frac{b^2}{ax+b} \right]$
11.27	$\int \frac{x^2 dx}{(ax+b)^3} = \frac{1}{a^3} \left[\ln(ax+b) + \frac{2b}{ax+b} - \frac{b^2}{2(ax+b)^2} \right]$
11.28	$\int x^{m}(ax+b)^{n} dx = \begin{cases} \frac{1}{a(m+n+1)} \Big[x^{m}(ax+b)^{n+1} - mb \int x^{m-1}(ax+b)^{n} dx \Big], & m > 0, \ m+n+1 \neq 0 \\ \frac{1}{m+n+1} \Big[x^{m+1}(ax+b)^{n} + nb \int x^{m}(ax+b)^{n-1} dx \Big], & m > 0, \ m+n+1 \neq 0 \end{cases}$
II.29	$\int \frac{dx}{x(ax+b)} = \frac{1}{b} \ln \frac{x}{ax+b} \int \frac{dx}{x(ax+b)} = \frac{1}{b} \ln \left(\frac{x}{ax+b}\right)$
11.30	$\int \frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2} \ln\left(\frac{ax+b}{x}\right)$
II.31	$\int \frac{dx}{x^{3}(ax+b)} = \frac{2ax-b}{2b^{2}x^{2}} + \frac{a^{2}}{b^{3}} \ln\left(\frac{x}{ax+b}\right)$
11.32	$\int \frac{dx}{x(ax+b)^2} = \frac{1}{b(ax+b)} - \frac{1}{b^2} \ln\left(\frac{ax+b}{x}\right)$
11.33	$\int \frac{dx}{x(ax+b)^3} = \overline{\frac{1}{b^3} \left[\frac{1}{2} \left(\frac{ax+2b}{ax+b} \right)^2 + \ln\left(\frac{x}{ax+b} \right) \right]}$

11.34	$\int \frac{dx}{x^2(ax+b)^2} = -\frac{b+2ax}{b^2x(ax+b)} + \frac{2a}{b^3} \ln\left(\frac{ax+b}{x}\right)$
11.35	$\int \sqrt{ax+b} dx = \frac{2}{3a} \sqrt{(ax+b)^3}$
11.36	$\int x\sqrt{ax+b}dx = \frac{2(3ax-2b)}{15a^2}\sqrt{(ax+b)^3}$
II.37	$\int x^2 \sqrt{ax+b} dx = \frac{2(15a^2x^2 - 12abx + 8b^2)\sqrt{(ax+b)^3}}{105a^3}$
11.38	$\int x^3 \sqrt{ax+b} dx = \frac{2(35a^3x^3 - 30a^2bx^2 + 24ab^2x - 16b^3)\sqrt{ax+b}}{315a^4}$
II.39	$\int x^n \sqrt{ax+b} dx = \frac{2}{a^{n+1}} \int u^2 (u^2-b)^n du , \text{four } u = \sqrt{ax+b}$
II.40	$\int \frac{\sqrt{ax+b}}{x} dx = 2\sqrt{ax+b} + b \int \frac{dx}{x\sqrt{ax+b}}$
II.41	$\int \frac{dx}{\sqrt{ax+b}} = \frac{2\sqrt{ax+b}}{a}$
11.42	$\int \frac{xdx}{\sqrt{ax+b}} = \frac{2(ax-2b)}{3a^2}\sqrt{ax+b}$
11.43	$\int \frac{x^2 dx}{\sqrt{ax+b}} = \frac{2(3a^2x^2 - 4abx + 8b^2)}{15a^3}\sqrt{ax+b}$
II.44	$\int \frac{x^3 dx}{\sqrt{ax+b}} = \frac{2(5a^3x^3 - 6a^2bx^2 + 8ab^2x - 16b^3)}{35a^4}\sqrt{ax+b}$
11.45	$\int \frac{x^n dx}{\sqrt{ax+b}} = \frac{2}{a^{n+1}} \int (u^2 - b)^n du , \text{foron} u = \sqrt{ax+b}$
11.46	$\int \frac{dx}{x\sqrt{ax+b}} = \begin{cases} \frac{1}{\sqrt{b}} \ln \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}}, & \text{yia } b > 0\\ \frac{2}{\sqrt{-b}} \tan^{-1} \sqrt{\frac{ax+b}{-b}}, & \text{yia } b < 0 \end{cases}$
II.47	$\int \frac{dx}{x^2 \sqrt{ax+b}} = -\frac{ax+b}{bx} - \frac{a}{2b} \int \frac{dx}{x \sqrt{ax+b}}$
II.48	$\int \frac{dx}{x^3 \sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{2bx^2} + \frac{3a\sqrt{ax+b}}{4b^2x} + \frac{3a^2}{8b^2} - \int \frac{dx}{x\sqrt{ax+b}}$
II.49	$\int \frac{dx}{x^{n}(ax+b)^{m}} = -\frac{1}{b^{m+n-1}} \int \frac{(u-a)^{m+n-2}}{u^{m}} du , \text{ frow } u = \frac{ax+b}{x}$
11.50	$\int \frac{dx}{x(ax+b)^{n/2}} = \frac{1}{b} \int \frac{dx}{x(ax+b)^{\frac{n}{2}-1}} - \frac{a}{b} \int \frac{dx}{(ax+b)^{n/2}}$
11.51	$\int \frac{x^m dx}{\sqrt{ax+b}} = \frac{2x^m \sqrt{ax+b}}{(2m+1)a} - \frac{2mb}{(2m+1)a} \int \frac{x^{m-1} dx}{\sqrt{ax+b}}, m \neq -\frac{1}{2}$
11.52	$\int \frac{dx}{x^n \sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{(n-1)bx^{n-1}} - \frac{(2n-3)a}{(2n-2)b} \int \frac{dx}{x^{n-1} \sqrt{ax+b}}, n \neq 1$

11.53	$\int \frac{(ax+b)^{n/2}}{x} dx = a \int (ax+b)^{\frac{n-2}{2}} dx + b \int \frac{(ax+b)^{\frac{n-2}{2}}}{x} dx$
11.54	$\int \frac{dx}{(ax+b)(cx+d)} = \frac{1}{bc-ad} \ln\left(\frac{cx+d}{ax+b}\right), \text{fig. } bc-ad \neq 0$
11.55	$\int \frac{dx}{(ax+b)^2(cx+d)} = \frac{1}{bc-ad} \left[\frac{1}{ax+b} + \frac{c}{bc-ad} \ln\left(\frac{cx+d}{ax+b}\right) \right], \text{yia} \ bc-ad \neq 0$
11.56	$\int (ax+b)^n (cx+d)^m dx = \frac{1}{(m+n+1)a} \Big[(ax+b)^{n+1} (cx+d)^m - m(bc-ad) \int (ax+b)^n (cx+d)^{m-1} dx \Big]$
11.57	$\int \frac{dx}{(ax+b)^n (cx+d)^m} = -\frac{1}{(m-1)(bc-ad)} \left[\frac{1}{(ax+b)^{n-1} (cx+d)^{m-1}} + a(m+n-2) \int \frac{dx}{(ax+b)^n (cx+d)^{m-1}} \right]$ $\gamma \iota a \ m > 1, \ n > 0, \ bc - ad \neq 0$
11.58	$\int \frac{(ax+b)^n}{(cx+d)^m} dx = \begin{cases} -\frac{1}{(m-1)(bc-ad)} \left[\frac{(ax+b)^{n+1}}{(cx+d)^{m-1}} + (m-n-2)a \int \frac{(ax+b)^n}{(cx+d)^{m-1}} \right] \\ -\frac{1}{(m-n-1)c} \left[\frac{(ax+b)^n}{(cx+d)^{m-1}} + n(bc-ad) \int \frac{(ax+b)^{n-1}dx}{(cx+d)^m} \right] \end{cases}$
11.59	$\int \frac{xdx}{(ax+b)(cx+d)} = \frac{1}{bc-ad} \left[\frac{b}{a} \ln(ax+b) - \frac{d}{c} \ln(cx+d) \right], \text{yia} bc-ad \neq 0$
II.60	$\int \frac{xdx}{(ax+b)^2(cx+d)} = \frac{1}{bc-ad} \left[-\frac{b}{a(ax+b)} - \frac{d}{bc-ad} \ln\left(\frac{cx+d}{ax+b}\right) \right], \text{yia} bc-ad \neq 0$
II.61	$\int \frac{cx+d}{\sqrt{ax+b}} dx = \frac{2}{3a^2} (3ad-2bc+acx)\sqrt{ax+b}$
II.62	$\int \frac{\sqrt{ax+b}}{cx+d} dx = \begin{cases} \frac{2\sqrt{ax+b}}{c} - \frac{2}{c}\sqrt{\frac{ad-bc}{c}} \tan^{-1}\left[\sqrt{\frac{c(ax+b)}{ad-bc}}\right], & c > 0, \ ad > bc\\ \frac{2\sqrt{ax+b}}{c} + \frac{1}{c}\sqrt{\frac{bc-ad}{c}} \ln\left[\frac{\sqrt{c(ax+b)} - \sqrt{bc-ad}}{\sqrt{c(ax+b)} + \sqrt{bc-ad}}\right], & c > 0, \ bc > ad \end{cases}$
11.63	$\int \frac{dx}{(cx+d)\sqrt{ax+b}} = \begin{cases} \frac{2}{\sqrt{c}\sqrt{ad-bc}} \tan^{-1}\left[\sqrt{\frac{c(ax+b)}{ad-bc}}\right], & c > 0, \ ad > bc\\ \frac{1}{\sqrt{c}\sqrt{bc-ad}} \ln\left[\frac{\sqrt{c(ax+b)} - \sqrt{bc-ad}}{\sqrt{c(ax+b)} + \sqrt{bc-ad}}\right], & c > 0, \ bc > ad \end{cases}$
11.64	$\int \frac{dx}{\sqrt{ax+b}\sqrt{cx+d}} = \begin{cases} \frac{2}{\sqrt{-ac}} \tan^{-1} \left[\sqrt{\frac{-c(ax+b)}{a(cx+d)}} \right], & ac < 0, a > 0\\ \frac{2}{\sqrt{ac}} \ln \left[\sqrt{ac(ax+b)} + a\sqrt{cx+d} \right], & ac > 0 \end{cases}$
11.65	$\int \sqrt{ax+b}\sqrt{cx+d}dx = \frac{(2acx+bc+ad)\sqrt{ax+b}\sqrt{cx+d}}{4ac} - \frac{(ad-bc)^2}{8ac} \int \frac{dx}{\sqrt{ax+b}\sqrt{cx+d}}$
II.66	$\int \sqrt{\frac{cx+d}{ax+b}} dx = \frac{\sqrt{ax+b}\sqrt{cx+d}}{a} + \frac{ad-bc}{2a} \int \frac{dx}{\sqrt{ax+b}\sqrt{cx+d}}$
II.67	$\int \sqrt{\frac{x+b}{x+d}} dx = \sqrt{x+d}\sqrt{x+b} + (b-d)\ln\left(\sqrt{x+d} + \sqrt{x+b}\right)$
11.68	$\int \sqrt{\frac{1+x}{1-x}} dx = \sin^1 x - \sqrt{1-x^2}$

11.69	$\int \sqrt{\frac{p-x}{q+x}} dx = \sqrt{p-x}\sqrt{q+x} + (p+q)\sin^{-1}\left(\sqrt{\frac{x+q}{p+q}}\right)$
II.70	$\int \sqrt{\frac{p+x}{q-x}} dx = -\sqrt{p+x}\sqrt{q-x} - (p+q)\sin^{-1}\left(\sqrt{\frac{q-x}{p+q}}\right)$
II.71	$\int \frac{dx}{\sqrt{x-p}\sqrt{q-x}} = 2\sin^{-1}\left(\sqrt{\frac{x-p}{q-p}}\right)$

ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΕ $ax^2 + c$, $ax^n + c$, $x^2 \pm p^2$, $p^2 - x^2$: $a \neq 0$, p > 0

II.72	$\int \frac{dx}{p^2 + x^2} = \frac{1}{p} \tan^{-1} \left(\frac{x}{p} \right)$
II.73	$\int \frac{dx}{p^2 - x^2} = \frac{1}{2p} \ln\left(\frac{p+x}{p-x}\right)$
II.74	$\int \frac{dx}{ax^2 + c} = \frac{1}{\sqrt{ac}} \tan^{-1} \left(x \sqrt{\frac{a}{c}} \right), \text{fig. } a, c > 0$
11.75	$\int \frac{dx}{ax^2 + c} = \begin{cases} \frac{1}{2\sqrt{-ac}} \ln\left(\frac{x\sqrt{a} - \sqrt{-c}}{x\sqrt{a} + \sqrt{-c}}\right), & \text{fig. } a > 0, \ c < 0\\ \frac{1}{2\sqrt{-ac}} \ln\left(\frac{\sqrt{c} + x\sqrt{-a}}{\sqrt{c} - x\sqrt{-a}}\right), & \text{fig. } a < 0, \ c < 0 \end{cases}$
II.76	$\int (ax^{2} + c)^{m} dx = \frac{x(ax^{2} + c)^{m}}{2m + 1} + \frac{2mc}{2m + 1} \int (ax^{2} + c)^{m-1} dx$
II.7 7	$\int \frac{dx}{\left(ax^2+c\right)^n} = \frac{1}{2(n-1)c} \frac{x}{\left(ax^2+c\right)^{n-1}} + \frac{2n-3}{2(n-1)c} \int \frac{dx}{\left(ax^2+c\right)^{n-1}}, \qquad n>1$
II.78	$\int x(ax^2 + c)^n dx = \frac{1}{2a} \frac{(ax^2 + c)^{n+1}}{n+1}, n \neq -1$
II.79	$\int \frac{x}{ax^2 + c} dx = \frac{1}{2a} \ln(ax^2 + c)$
11.80	$\int \frac{dx}{x(ax^2+c)} = \frac{1}{2c} \ln\left(\frac{x^2}{ax^2+c}\right)$
II.81	$\int \frac{dx}{x^2(ax^2+c)} = -\frac{1}{cx} - \frac{a}{c} \int \frac{dx}{ax^2+c}$
II.82	$\int \frac{x^2 dx}{ax^2 + c} = \frac{x}{a} - \frac{c}{a} \int \frac{dx}{ax^2 + c}$
II.83	$\int \frac{x^n dx}{ax^2 + c} = \frac{x^{n-1}}{a(n-1)} - \frac{c}{a} \int \frac{x^{n-2}}{ax^2 + c} dx, \qquad n \neq -1$
II.84	$\int \frac{x^2 dx}{\left(ax^2 + c\right)^n} = -\frac{x}{2a(n-1)(ax^2 + c)^{n-1}} + \frac{1}{2(n-1)a} \int \frac{dx}{\left(ax^2 + c\right)^{n-1}}$
11.85	$\int \frac{dx}{x^2 (ax^2 + c)^n} = \frac{1}{c} \int \frac{dx}{x^2 (ax^2 + c)^{n-1}} - \frac{a}{c} \int \frac{dx}{(ax^2 + c)^n}$
II.102	$\int \frac{dx}{x\sqrt{ax^2 + c}} = \begin{cases} \frac{1}{\sqrt{c}} \ln\left(\frac{\sqrt{ax^2 + c} - \sqrt{c}}{x}\right), & c > 0\\ 1 & c < 0 \end{cases}$
--------	--
	$\left[\frac{1}{\sqrt{-c}}\sec^{-1}\left(x\sqrt{-\frac{a}{c}}\right), c < 0, a > 0\right]$
II.103	$\int \frac{dx}{x^2 \sqrt{ax^2 + c}} = -\frac{\sqrt{ax^2 + c}}{cx}$
II.104	$\int \frac{x^n dx}{\sqrt{ax^2 + c}} = \frac{x^{n-1}\sqrt{ax^2 + c}}{na} - \frac{(n-1)c}{na} \int \frac{x^{n-2} dx}{\sqrt{ax^2 + c}}, \qquad n > 0$
11.105	$\int x^n \sqrt{ax^2 + c} dx = \frac{x^{n-1}(ax^2 + c)^{3/2}}{(n+2)a} - \frac{(n-1)c}{(n+2)a} \int x^{n-2} \sqrt{ax^2 + c} dx$
II.106	$\int \frac{\sqrt{ax^2 + c}}{x^n} dx = -\frac{(ax^2 + c)^{3/2}}{c(n-1)x^{n-1}} - \frac{(n-4)a}{(n-1)c} \int \frac{\sqrt{ax^2 + c}}{x^{n-2}} dx$
II.107	$\int \frac{dx}{x^n \sqrt{ax^2 + c}} = -\frac{\sqrt{ax^2 + c}}{c(n-1)x^{n-1}} - \frac{(n-2)a}{(n-1)c} \int \frac{dx}{x^{n-2} \sqrt{ax^2 + c}}$
II.108	$\int (ax^{2} + c)^{3/2} dx = \begin{cases} \frac{x}{8} (2ax^{2} + 5c)\sqrt{ax^{2} + c} + \frac{3c^{2}}{8\sqrt{a}} \ln\left(x\sqrt{a} + \sqrt{ax^{2} + c}\right), & a > 0\\ \frac{x}{8} (2ax^{2} + 5c)\sqrt{ax^{2} + c} + \frac{3c^{2}}{8\sqrt{-a}} \sin^{-1}\left(x\sqrt{\frac{-a}{c}}\right), & a < 0 \end{cases}$
II.109	$\int \frac{dx}{\left(ax^2 + c\right)^{3/2}} = \frac{x}{c\sqrt{ax^2 + c}}$
II.110	$\int x(ax^2+c)^{3/2}dx = \frac{1}{5a}(ax^2+c)^{5/2}$
II.111	$\int x^2 (ax^2 + c)^{3/2} dx = \frac{x^3}{6} (ax^2 + c)^{3/2} + \frac{c}{2} \int x^2 \sqrt{ax^2 + c} dx$
II.112	$\int x^n (ax^2 + c)^{3/2} dx = \frac{x^{n+1} (ax^2 + c)^{3/2}}{n+4} + \frac{3c}{n+4} \int x^n \sqrt{ax^2 + c} dx$
II.113	$\int \frac{x dx}{(ax^2 + c)^{3/2}} = -\frac{1}{a\sqrt{ax^2 + c}}$
II.114	$\int \frac{x^2 dx}{(ax^2 + c)^{3/2}} = \begin{cases} -\frac{x}{a\sqrt{ax^2 + c}} + \frac{1}{a\sqrt{a}}\ln\left(x\sqrt{a} + \sqrt{ax^2 + c}\right), & a > 0\\ -\frac{x}{a\sqrt{ax^2 + c}} + \frac{1}{a\sqrt{-a}}\sin^{-1}\left(x\sqrt{\frac{-a}{c}}\right), & a < 0, \ c > 0 \end{cases}$
11.115	$\int \frac{x^3 dx}{\left(ax^2 + c\right)^{3/2}} = -\frac{x^2}{a\sqrt{ax^2 + c}} + \frac{2\sqrt{ax^2 + c}}{a^2}$
II.116	$\int \frac{dx}{x(ax^n + c)} = \frac{1}{cn} \ln\left(\frac{x^n}{ax^n + c}\right)$
II.117	$\int \frac{dx}{(ax^{n}+c)^{m}} = \frac{1}{c} \int \frac{dx}{(ax^{n}+c)^{m-1}} - \frac{a}{c} \int \frac{x^{n}dx}{(ax^{n}+c)^{m}}$
11.118	$\int \frac{dx}{x\sqrt{ax^n + c}} = \begin{cases} \frac{1}{n\sqrt{c}} \ln\left(\frac{\sqrt{ax^n + c} - \sqrt{c}}{\sqrt{ax^n + c} + \sqrt{c}}\right), & c > 0\\ \frac{2}{n\sqrt{-c}} \sec^{-1}\left(\sqrt{\frac{-ax^n}{c}}\right), & c < 0 \end{cases}$

ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΕ $ax^2 + bx + c$, $a \neq 0$

П.119	$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln\left(\frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}}\right), & b^2 > 4ac\\ \frac{2}{\sqrt{4ac - b^2}} \tan^{-1}\left(\frac{2ax + b}{\sqrt{4ac - b^2}}\right), & b^2 < 4ac\\ -\frac{2}{\sqrt{4ac}}, & b^2 = 4ac \end{cases}$
II.120	$\int \frac{dx}{(ax^2 + bx + c)^{n+1}} = \frac{2ax + b}{n(4ac - b^2)(ax^2 + bx + c)^n} + \frac{2(2n - 1)a}{n(4ac - b^2)} \int \frac{dx}{(ax^2 + bx + c)^{n-1}}$
II.121	$\int \frac{xdx}{ax^2 + bx + c} = \frac{1}{2a} \ln(ax^2 + bx + c) - \frac{b}{2a} \int \frac{dx}{ax^2 + bx + c}$
II.122	$\int \frac{x^2 dx}{ax^2 + bx + c} = \frac{x}{a} - \frac{b}{2a^2} \ln(ax^2 + bx + c) + \frac{b^2 - 2ac}{2a^2} \int \frac{dx}{ax^2 + bx + c}$
II.123	$\int \frac{x^n dx}{ax^2 + bx + c} = \frac{x^{n-1}}{(n-1)a} - \frac{c}{a} \int \frac{x^{n-2} dx}{ax^2 + bx + c} - \frac{b}{a} \int \frac{x^{n-1} dx}{ax^2 + bx + c}$
II.124	$\int \frac{xdx}{(ax^2 + bx + c)^{n+1}} = \frac{-(2c + bx)}{n(4ac - b^2)(ax^2 + bx + c)^n} - \frac{b(2n - 1)}{n(4ac - b^2)} \int \frac{dx}{(ax^2 + bx + c)^n} dx$
II.125	$\int \frac{x^m dx}{\left(ax^2 + bx + c\right)^{n+1}} = -\frac{x^{m-1}}{a(2n - m + 1)(ax^2 + bx + c)^n} - \frac{(n - m + 1)b}{(2n - m + 1)a} \int \frac{x^{m-1} dx}{\left(ax^2 + bx + c\right)^{n+1}} + \frac{(m - 1)c}{(2n - m + 1)a} \int \frac{x^{m-2}}{\left(ax^2 + bx + c\right)^{n+1}}$
II.126	$\int \frac{dx}{x(ax^2+bx+c)} = \frac{1}{2c} \ln\left(\frac{x^2}{ax^2+bx+c}\right) - \frac{b}{2c} \int \frac{dx}{ax^2+bx+c}$
II.127	$\int \frac{dx}{x^2(ax^2 + bx + c)} = \frac{b}{2c^2} \ln\left(\frac{ax^2 + bx + c}{x^2}\right) - \frac{1}{cx} + \left(\frac{b^2}{2c^2} - \frac{a}{c}\right) \int \frac{dx}{ax^2 + bx + c}$
II.128	$\int \frac{dx}{x^m (ax^2 + bx + c)^{n+1}} = -\frac{1}{(m-1)cx^{m-1}(ax^2 + bx + c)^n} -\frac{(n+m-1)b}{(m-1)c} \int \frac{dx}{x^{m-1}(ax^2 + bx + c)^{n+1}} -\frac{(2n+m-1)a}{(m-1)c} \int \frac{dx}{x^{m-2}(ax^2 + bx + c)^{n+1}}$
II.129	$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln\left(2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c}\right), & a > 0\\ \frac{1}{\sqrt{-a}} \sin^{-1}\left(\frac{-2ax - b}{\sqrt{b^2 - 4ac}}\right), & a < 0 \end{cases}$
II.130	$\int \frac{xdx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$
II.131	$\int \frac{x^n dx}{\sqrt{ax^2 + bx + c}} = \frac{x^{n-1}\sqrt{ax^2 + bx + c}}{an} - \frac{b(2n-1)}{2an} \int \frac{x^{n-1} dx}{\sqrt{ax^2 + bx + c}} - \frac{c(n-1)}{an} \int \frac{x^{n-2} dx}{\sqrt{ax^2 + bx + c}}$
II.132	$\int x\sqrt{ax^{2} + bx + c}dx = \frac{(ax^{2} + bx + c)^{3/2}}{3a} - \frac{b}{2a}\int\sqrt{ax^{2} + bx + c}dx$
II.133	$\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$

II.134	$\int x^2 \sqrt{ax^2 + bx + c} dx = \left(x - \frac{5b}{6a}\right) \frac{\left(ax^2 + bx + c\right)^{3/2}}{4a} + \frac{5b^2 - 4ac}{16a^2} \int \sqrt{ax^2 + bx + c} dx$
11.135	$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln\left(\frac{\sqrt{ax^2 + bx + c} + \sqrt{c}}{x} + \frac{b}{2\sqrt{c}}\right), & c > 0\\ \frac{1}{\sqrt{-c}} \sin^{-1}\left(\frac{bx + 2c}{x\sqrt{b^2 - 4ac}}\right), & x > 0 & c < 0\\ -\frac{2}{bx}\sqrt{ax^2 + bx}, & c = 0 \end{cases}$
II.136	$\int \frac{dx}{x^n \sqrt{ax^2 + bx + c}} = -\frac{\sqrt{ax^2 + bx + c}}{c(n-1)x^{n-1}} + \frac{b(3-2n)}{2c(n-1)} \int \frac{dx}{x^{n-1} \sqrt{ax^2 + bx + c}} + \frac{a(2-n)}{c(n-1)} \int \frac{dx}{x^{n-2} \sqrt{ax^2 + bx + c}}$
II.137	$\int \frac{dx}{\left(ax^{2} + bx + c\right)^{3/2}} = \begin{cases} -\frac{2(2ax + b)}{\left(b^{2} - 4ac\right)\sqrt{ax^{2} + bx + c}}, & b^{2} \neq 4ac\\ -\frac{1}{2\sqrt{a^{3}}\left(x + b/2a\right)^{2}}, & b^{2} = 4ac \end{cases}$

Ολοκληρωματα με	$\sqrt{2ax-x^2}$,	$\sqrt{2ax+x^2}$
-----------------	--------------------	------------------

II.138	$\int \sqrt{2ax - x^2} dx = \frac{x - a}{2} \sqrt{2ax - x^2} \pm \frac{a^2}{2} \sin^{-1}\left(\frac{x - a}{a}\right) \qquad \begin{cases} \text{To} + \gamma \iota a \ a > 0\\ \text{To} - \gamma \iota a \ a < 0 \end{cases}$
II.139	$\int \frac{dx}{\sqrt{2ax - x^2}} = \pm \cos^{-1} \left(\frac{a - x}{a} \right) \text{To} + \gamma i \alpha \ a > 0, \ \text{to} - \gamma i \alpha \ a < 0$
II.140	$\int x^m \sqrt{2ax - x^2} dx = -\frac{x^{m-1}(2ax - x^2)^{3/2}}{m+2} + \frac{(2m+1)a}{m+2} \int x^{m-1} \sqrt{2ax - x^2} dx$
II.141	$\int x\sqrt{2ax - x^2} dx = a \int \sqrt{2ax - x^2} dx - \frac{(2ax - x^2)^{3/2}}{3}$
II.142	$\int \frac{dx}{x\sqrt{2ax - x^2}} = -\frac{\sqrt{2ax - x^2}}{ax}$
II.143	$\int \frac{xdx}{\sqrt{2ax - x^2}} = -\sqrt{2ax - x^2} + a \int \frac{dx}{\sqrt{2ax - x^2}}$
II.144	$\int \frac{x^2 dx}{\sqrt{2ax - x^2}} = -\frac{x\sqrt{2ax - x^2}}{2} + \frac{3a}{2} \int \frac{x dx}{\sqrt{2ax - x^2}}$
II.145	$\int \frac{\sqrt{2ax - x^2}}{x} dx = \frac{(2ax - x^2)^{3/2}}{ax} + \frac{2}{a} \int \sqrt{2ax - x^2} dx$
II.146	$\int \frac{\sqrt{2ax - x^2}}{x^2} dx = -\frac{(2ax - x^2)^{3/2}}{ax^2} - \frac{1}{a} \int \frac{\sqrt{2ax - x^2}}{x} dx$
II.147	$\int \frac{\sqrt{2ax - x^2}}{x^n} dx = \frac{(2ax - x^2)^{3/2}}{(3 - 2n)ax^n} + \frac{n - 3}{(2n - 3)a} \int \frac{\sqrt{2ax - x^2}}{x^{n - 1}} dx$
II.148	$\int \frac{dx}{(2ax - x^2)^{3/2}} = \frac{x - a}{a^2 \sqrt{2ax - x^2}}$

$$\begin{aligned} \mathbf{H.149} \quad & \int \frac{x dx}{(2ax - x^2)^{3/2}} = \frac{x}{a\sqrt{2ax - x^2}} \\ \mathbf{H.150} \quad & \int \frac{dx}{\sqrt{2ax + x^2}} = \ln\left(x + a + \sqrt{2ax + x^2}\right) \end{aligned}$$

ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΕ sin ax

II.151	$\int \sin ax dx = -\frac{1}{a} \cos ax$
II.152	$\int \sin^2 ax dx = \frac{x}{2} - \frac{\sin 2ax}{4a}$
II.153	$\int \sin^3 ax dx = -\frac{1}{a} \cos ax + \frac{1}{3a} \cos^3 ax$
II.154	$\int \sin^4 ax dx = \frac{3x}{8} - \frac{3\sin 2ax}{16a} - \frac{\sin^3 ax \cos ax}{4a}$
II.155	$\int \sin^n ax dx = -\frac{\sin^{n-1} ax \cos ax}{na} + \frac{n-1}{n} \int \sin^{n-2} ax dx, \qquad n \in \mathbb{Z}^+$
II.156	$\int \frac{dx}{\sin ax} = \frac{1}{a} \ln \left(\tan \frac{ax}{2} \right)$
II.157	$\int \frac{dx}{\sin^2 ax} = -\frac{1}{a \tan ax}$
II.158	$\int \frac{dx}{\sin^n ax} = -\frac{1}{a(n-1)} \frac{\cos ax}{\sin^{n-1} ax} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} ax}, \qquad n \in \mathbb{Z}^+, \ n > 1$
II.159	$\int \frac{dx}{1\pm\sin ax} = \mp \frac{1}{a} \tan\left(\frac{\pi}{4} \mp \frac{ax}{2}\right)$
11.160	$\int \frac{dx}{b+c\sin ax} = \begin{cases} \frac{-2}{a\sqrt{b^2 - c^2}} \tan^{-1} \left[\sqrt{\frac{b-c}{b+c}} \tan\left(\frac{\pi}{4} - \frac{ax}{2}\right) \right], & b^2 > c^2 \\ \frac{-1}{a\sqrt{c^2 - b^2}} \ln\left(\frac{c+b\sin ax + \sqrt{c^2 - b^2}\cos ax}{b+c\sin ax}\right), & b^2 < c^2 \end{cases}$
II.161	$\int \sin ax \cdot \sin bx dx = \frac{\sin(a-b)x}{2(a-b)} - \frac{\sin(a+b)x}{2(a+b)}, \qquad a^2 \neq b^2$
II.162	$\int \sqrt{1+\sin x} dx = \pm 2 \left(\sin \frac{x}{2} - \cos \frac{x}{2} \right) \qquad \text{To} + \epsilon \text{and} (8k-1)\frac{\pi}{2} < x \le (8k+3)\frac{\pi}{2} , \text{ alling to } - (k \in \mathbb{Z})$
II.163	$\int \sqrt{1 - \sin x} dx = \pm 2 \left(\sin \frac{x}{2} + \cos \frac{x}{2} \right) \qquad \text{To} + \text{ean} (8k - 3) \frac{\pi}{2} < x \le (8k + 1) \frac{\pi}{2} , \text{alligg to} - (k \in \mathbb{Z})$

ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΕ $\cos ax$

II.164	$\int \cos ax dx = \frac{1}{a} \sin ax$
	J a

-	
II.165	$\int \cos^2 ax dx = \frac{x}{2} + \frac{\sin 2ax}{4a}$
II.166	$\int \cos^3 ax dx = \frac{1}{a} \sin ax - \frac{1}{3a} \sin^3 ax$
II.167	$\int \cos^4 ax dx = \frac{3x}{8} + \frac{3\sin 2ax}{16a} + \frac{\cos^3 ax \sin ax}{4a}$
II.168	$\int \cos^n ax dx = \frac{\cos^{n-1} ax \sin ax}{na} + \frac{n-1}{n} \int \cos^{n-2} ax dx$
II.169	$\int \frac{dx}{\cos ax} = \frac{1}{a} \ln \left[\tan \left(\frac{ax}{2} + \frac{\pi}{4} \right) \right]$
II.170	$\int \frac{dx}{\cos^2 ax} = \frac{1}{a} \tan ax$
II.171	$\int \frac{dx}{\cos^{n} ax} = \frac{1}{a(n-1)} \frac{\sin ax}{\cos^{n-1} ax} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} ax}, n \in \mathbb{Z}^{+}, n > 1$
II.172	$\int \frac{dx}{1 + \cos ax} = \frac{1}{a} \tan\left(\frac{ax}{2}\right)$
II.173	$\int \frac{dx}{1 - \cos ax} = -\frac{1}{a \tan\left(\frac{ax}{2}\right)}$
II.174	$\int \sqrt{1 + \cos x} dx = \pm \sqrt{2} \int \cos \frac{x}{2} dx = \pm 2\sqrt{2} \sin \frac{x}{2}$ To + eán $(4k-1)\pi < x \le (4k+1)\pi$, allián to - $(k \in \mathbb{Z})$
II.175	$ \int \sqrt{1 - \cos x} dx = \pm \sqrt{2} \int \sin \frac{x}{2} dx = \mp 2\sqrt{2} \cos \frac{x}{2} $ Τα πάνω σημεία εάν $4k\pi < x \le (4k+2)\pi$, αλλιώς τα κάτω
11.176	$\int \frac{dx}{b+c\cos ax} = \begin{cases} \frac{1}{a\sqrt{b^2 - c^2}} \tan^{-1}\left(\frac{\sqrt{b^2 - c^2}\sin ax}{c+b\cos ax}\right), & b^2 > c^2\\ \frac{1}{a\sqrt{c^2 - b^2}} \tanh^{-1}\left(\frac{\sqrt{c^2 - b^2}\sin ax}{c+b\cos ax}\right), & b^2 < c^2 \end{cases}$
II.177	$\int \cos ax \cos bx dx = \frac{\sin(a-b)x}{2(a-b)} + \frac{\sin(a+b)x}{2(a+b)}, \qquad a^2 \neq b^2$

ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΕ sin ax, cos ax

II.178	$\int \sin ax \cos bx dx = -\frac{1}{2} \left[\frac{\cos(a-b)x}{a-b} + \frac{\cos(a+b)x}{a+b} \right], a^2 \neq b^2$
II.179	$\int \sin^n ax \cos ax dx = \frac{1}{a(n+1)} \sin^{n+1} ax , n \neq -1$
II.180	$\int \cos^n ax \sin ax dx = -\frac{1}{a(n+1)} \cos^{n+1} ax , \qquad n \neq -1$
II.181	$\int \frac{\sin ax}{\cos ax} dx = -\frac{1}{a} \ln\left(\cos ax\right)$

II.182	$\int \frac{\cos ax}{\sin ax} dx = \frac{1}{a} \ln\left(\sin ax\right)$
II.183	$\int (b+c\sin ax)^n \cos ax dx = \frac{1}{ac(n+1)} (b+c\sin ax)^{n+1}, \qquad n \neq -1$
II.184	$\int (b + c \cos ax)^n \sin ax dx = -\frac{1}{ac(n+1)} (b + c \cos ax)^{n+1}, \qquad n \neq -1$
II.185	$\int \frac{\cos ax}{b+c\sin ax} dx = \frac{1}{ac} \ln(b+c\sin ax)$
II.186	$\int \frac{\sin ax}{b+c\cos ax} dx = -\frac{1}{ac} \ln(b+c\cos ax)$
II.187	$\int \frac{dx}{b\sin ax + c\cos ax} = \frac{1}{a\sqrt{b^2 + c^2}} \ln\left[\tan\frac{1}{2}\left(ax + \tan^{-1}\frac{c}{b}\right)\right], b > 0$
11.188	$\int \frac{dx}{b+c\cos ax+d\sin ax} = \begin{cases} \frac{-1}{a\sqrt{b^2 - c^2 - d^2}} \sin^{-1} \left[\frac{c^2 + d^2 + b(c\cos ax + d\sin ax)}{\sqrt{c^2 + d^2}(b+c\cos ax + d\sin ax)} \right], & \forall a = \frac{b^2 > c^2 + d^2}{-\pi < ax < \pi} \\ \frac{1}{ab} \left[\frac{b - (c+d)\cos ax + (c-d)\sin ax}{b+(c-d)\cos ax + (c+d)\sin ax} \right], & \forall a = b^2 = c^2 + d^2 \end{cases}$
II.189	$\int \frac{\sin^2 ax dx}{b + c \cos^2 ax} = \frac{1}{ac} \sqrt{\frac{b+c}{b}} \tan^{-1} \left(\sqrt{\frac{b}{b+c}} \tan ax \right) - \frac{x}{c}$
II.190	$\int \frac{\sin ax \cos ax dx}{b \cos^2 ax + c \sin^2 ax} = \frac{1}{2a(c-b)} \ln(b \cos^2 ax + c \sin^2 ax)$
II.191	$\int \frac{dx}{b^2 \cos^2 ax + c^2 \sin^2 ax} = \frac{1}{abc} \tan^{-1} \left(\frac{c \tan ax}{b}\right)$
II.192	$\int \frac{dx}{b^2 \cos^2 ax - c^2 \sin^2 ax} = \frac{1}{2abc} \ln\left(\frac{b \cos ax + c \sin ax}{b \cos ax - c \sin ax}\right)$
II.193	$\int \sin^2 ax \cos^2 ax dx = \frac{x}{8} - \frac{\sin 4ax}{32a}$
II.194	$\int \frac{dx}{\sin ax \cos ax} = \frac{1}{a} \ln \left(\tan ax \right)$
II.195	$\int \frac{dx}{\sin^2 ax \cos^2 ax} = \frac{1}{a} \left(\tan ax - \frac{1}{\tan ax} \right)$
II.196	$\int \sin^m ax \cos^n ax dx = -\frac{\sin^{m-1} ax \cos^{n+1} ax}{a(m+n)} + \frac{m-1}{m+n} \int \sin^{m-2} ax \cos^n ax dx , \qquad m > 0 , \qquad n > 0$
II.197	$\int \frac{\sin^m ax}{\cos^n ax} dx = \frac{\sin^{m+1} ax}{a(n-1)\cos^{n-1} ax} - \frac{m-n+2}{n-1} \int \frac{\sin^m ax}{\cos^{n-2} ax} dx , \qquad m, n > 0 , \qquad n \neq 1$
II.198	$\int \frac{\cos^n ax}{\sin^m ax} dx = \frac{-\cos^{n+1} ax}{a(m-1)\sin^{m-1} ax} + \frac{m-n-2}{m-1} \int \frac{\cos^n ax}{\sin^{m-2} ax} dx, m, n > 0, m \neq 1$
II.199	$\int \frac{dx}{\sin^{m} ax \cos^{n} ax} = \frac{1}{a(n-1)} \frac{1}{\sin^{m-1} ax \cos^{n-1} ax} + \frac{m+n-2}{n-1} \int \frac{dx}{\sin^{m} ax \cos^{n-2} ax}$

ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΕ tan ax, cot ax

11.200	$\int \tan ax dx = -\frac{1}{a} \ln(\cos ax)$
II.201	$\int \tan^2 ax dx = \frac{1}{a} \tan ax - x$
11.202	$\int \tan^3 ax dx = \frac{1}{2a} \tan^2 ax + \frac{1}{a} \ln(\cos ax)$
II.203	$\int \tan^n ax dx = \frac{1}{a(n-1)} \tan^{n-1} ax - \int \tan^{n-2} ax dx, n \in \mathbb{Z}^+, n > 1$
II.204	$\int \frac{dx}{\tan ax} = \frac{1}{a} \ln\left(\sin ax\right)$
11.205	$\int \frac{1}{\tan^2 ax} dx = -\frac{1}{a \tan ax} - x$
11.206	$\int \frac{1}{\tan^3 ax} dx = -\frac{1}{2a \tan^2 ax} - \frac{1}{a} = \ln(\sin ax)$
11.207	$\int \frac{dx}{\tan^{n} ax} = -\frac{1}{a(n-1)\tan^{n-1} ax} - \int \frac{dx}{\tan^{n-2} ax}, \qquad n \in \mathbb{Z}^{+}, n > 1$
11.208	$\int \frac{dx}{b+c\tan ax} = \frac{1}{b^2 + c^2} \left[bx + \frac{c}{a} \ln(b\cos ax + c\sin ax) \right]$
11.209	$\int \frac{\tan axdx}{b\tan ax+c} = \frac{1}{b^2+c^2} \left[bx - \frac{c}{a} \ln(c\cos ax + b\sin ax) \right]$
II.210	$\int \frac{dx}{\sqrt{b+c\tan^2 ax}} = \frac{1}{a\sqrt{b-c}} \sin^{-1}\left(\sqrt{\frac{b-c}{b}}\sin ax\right), b > 0, b^2 > c^2, \ -\frac{\pi}{2} < ax < \frac{\pi}{2}$

Ολοκληρωματα με Αλγεβρικές και Τριγωνομετρικές Συναρτήσεις

II.211	$\int x \sin ax dx = \frac{\sin ax}{a^2} - \frac{x \cos ax}{a}$
II.212	$\int x^2 \sin ax dx = \frac{2x \sin ax}{a^2} + \left(\frac{2}{a^3} - \frac{x^2}{a}\right) \cos ax$
II.213	$\int x^{3} \sin ax dx = \left(\frac{3x^{2}}{a^{2}} - \frac{6}{a^{4}}\right) \sin ax - \left(\frac{x^{3}}{a} - \frac{6x}{a^{3}}\right) \cos ax$
II.214	$\int x \sin^3 ax dx = \frac{x \cos 3ax}{12a} - \frac{\sin 3ax}{36a^2} - \frac{3x \cos ax}{4a} + \frac{3 \sin ax}{4a^2}$
II.215	$\int x^n \sin ax dx = -\frac{1}{a} x^n \cos ax + \frac{n}{a} \int x^{n-1} \cos ax dx$
II.216	$\int \frac{\sin ax}{x} dx = ax - \frac{(ax)^3}{3 \cdot 3!} + \frac{(ax)^5}{5 \cdot 5!} - \frac{(ax)^7}{7 \cdot 7!} + \dots$

II.217	$\int \frac{\sin ax}{x^m} \frac{dx}{dx} = \frac{-\sin ax}{(m-1)x^{m-1}} + \frac{a}{m-1} \int \frac{\cos ax}{x^{m-1}} dx$
II.218	$\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{1}{a} x \sin ax$
II.219	$\int x^2 \cos ax dx = \frac{2x}{a^2} \cos ax + \frac{1}{a} x \sin ax$
11.220	$\int x^3 \cos ax dx = \frac{(3a^2x^2 - 6)\cos ax}{a^4} + \frac{(a^2x^3 - 6x)\sin ax}{a^3}$
II.221	$\int x \cos^3 ax dx = \frac{x \sin 3ax}{12a} + \frac{\cos 3ax}{36a^2} + \frac{3x \sin ax}{4a} + \frac{3 \cos ax}{4a^2}$
11.222	$\int x^n \cos ax dx = \frac{1}{a} x^n \sin ax - \frac{n}{a} \int x^{n-1} \sin ax dx, n > 0$
11.223	$\int \frac{\cos ax}{x} dx = \ln(ax) - \frac{(ax)^2}{2 \cdot 2!} + \frac{(ax)^4}{4 \cdot 4!} - \frac{(ax)^6}{6 \cdot 6!} + \dots$
II.224	$\int \frac{\cos ax}{x^m} dx = -\frac{\cos ax}{(m-1)x^{m-1}} - \frac{a}{m-1} \int \frac{\sin ax}{x^{m-1}} dx$

Ολοκληρωματά με Εκθετικές και Λογαριθμικές Συναρτήσεις

11.225	$\int e^{ax} dx = \frac{e^{ax}}{a}$
11.226	$\int b^{ax} dx = \frac{b^{ax}}{a \ln b}, \qquad 0 < b \neq 1$
II.227	$\int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1)$
II.228	$\int x b^{ax} dx = \frac{x b^{ax}}{a \ln b} - \frac{b^{ax}}{a^2 (\ln b)^2}, 0 < b \neq 1$
II.229	$\int x^n e^{ax} dx = \frac{e^{ax}}{a^{n+1}} [(ax)^n - n(ax)^{n-1} + n(n-1)(ax)^{n-2} - \dots + (-1)^n n!], \qquad n \in \mathbb{Z}, n > 0$
II.230	$\int x^{n} e^{-ax} dx = -\frac{e^{-ax}}{a^{n+1}} [(ax)^{n} + n(ax)^{n-1} + n(n-1)(ax)^{n-2} + \dots + n!], \qquad n \in \mathbb{Z}, n > 0$
II.231	$\int x^n b^{ax} dx = \frac{x^n b^{ax}}{a \ln b} - \frac{n}{a \ln b} \int x^{n-1} b^{ax} dx \qquad n > 0$
II.232	$\int \frac{e^{ax}}{x} dx = \ln x + ax + \frac{(ax)^2}{2 \cdot 2!} + \frac{(ax)^3}{3 \cdot 3!} + \dots$
II.233	$\int \frac{e^{ax}}{x^n} dx = \frac{1}{n-1} \left[-\frac{e^{ax}}{x^{n-1}} + a \int \frac{e^{ax}}{x^{n-1}} dx \right], \qquad n \in \mathbb{Z}, n > 1$
II.234	$\int \frac{dx}{b+ce^{ax}} = \frac{1}{ab} [ax - \ln(b+ce^{ax})]$

11.235	$\int \frac{e^{ax}}{b+ce^{ax}} dx = \frac{1}{ac} \ln(b+ce^{ax})$
11.236	$\int \frac{dx}{be^{ax} + ce^{-ax}} = \frac{1}{a\sqrt{bc}} \tan^{-1} \left(e^{ax} \sqrt{\frac{b}{c}} \right), b, c > 0$
II.237	$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} [a \sin bx - b \cos bx]$
II.238	$\int e^{ax} \sin bx \sin cx dx = \frac{e^{ax}}{2} \left[\frac{(b-c)\sin(b-c)x + a\cos(b-c)x}{a^2 + (b-c)^2} - \frac{(b+c)\sin(b+c)x + a\cos(b+c)x}{a^2 + (b+c)^2} \right]$
11.239	$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} [a \cos bx + b \cos bx]$
11.240	$\int e^{ax} \cos bx \cos cx dx = \frac{e^{ax} [(b-c)\sin(b-c)x + a\cos(b-c)x]}{2[a^2 + (b-c)^2]} + \frac{e^{ax} [(b+c)\sin(b+c)x + a\cos(b+c)x]}{2[a^2 + (b+c)^2]}$
II.241	$\int \frac{dx}{x(\ln ax)^n} = -\frac{1}{(n-1)(\ln ax)^{n-1}}$
II.242	$\int \frac{x^n dx}{(\ln ax)^m} = \frac{-x^{n+1}}{(m-1)(\ln ax)^{m-1}} + \frac{n+1}{m-1} \int \frac{x^n dx}{(\ln ax)^{m-1}}, m \neq 1$
11.243	$\int \frac{x^n dx}{\ln ax} = \frac{1}{a^{n+1}} \int \frac{e^y}{y} dy \qquad \text{ord} y = (n+1)\ln ax$ $= \frac{1}{a^{n+1}} \left\{ \ln \ln ax + (n+1)\ln ax + \frac{(n+1)^2(\ln ax)^2}{2 \cdot 2!} + \frac{(n+1)^3(\ln ax)^3}{3 \cdot 3!} + \dots \right\}$
II.244	$\int \frac{dx}{\ln ax} = \frac{1}{a} \left\{ \ln \ln ax + \ln ax + \frac{(\ln ax)^2}{2 \cdot 2!} + \frac{(\ln ax)^3}{3 \cdot 3!} + \dots \right\}$
11.245	$\int \sin(\ln ax)dx = \frac{x}{2} [\sin(\ln ax) - \cos(\ln ax)]$
11.246	$\int \cos(\ln ax)dx = \frac{x}{2} [\sin(\ln ax) + \cos(\ln ax)]$
II.247	$\int e^{ax} \ln bx dx = \frac{1}{a} e^{ax} \ln bx - \frac{1}{a} \int \frac{e^{ax}}{x} dx$

Ολοκληρωματα με Υπερβολικές Συναρτήσεις

II.248	$\int \sinh ax dx = \frac{1}{a} \cosh ax$
II.249	$\int \cosh ax dx = \frac{1}{a} \sinh ax$
11.250	$\int \tanh ax dx = \frac{1}{a} \ln \left(\cosh ax \right)$
II.251	$\int \frac{dx}{\tanh ax} = \frac{1}{a} \ln\left(\sinh ax\right)$

11.252	$\int \frac{dx}{\cosh(ax)} = \frac{2}{a} \tan^{-1}(e^{ax})$
11.253	$\int \frac{dx}{\sinh ax} = \frac{1}{a} \ln \left[\tanh \left(\frac{ax}{2} \right) \right]$
11.254	$\int \sinh^n ax dx = \frac{1}{na} \sinh^{n-1} ax \cosh ax - \frac{n-1}{n} \int \sinh^{n-2} ax dx$
11.255	$\int \cosh^{n} ax dx = \frac{1}{na} \sinh ax \cosh^{n-1} ax + \frac{n-1}{n} \int \cosh^{n-2} ax dx$
11.256	$\int \sinh^{-1} ax dx = x \sinh^{-1} ax - \frac{1}{a} \sqrt{a^2 x^2 + 1}$
11.257	$\int \cosh^{-1} ax dx = x \cosh^{-1} ax - \frac{1}{a} \sqrt{a^2 x^2 - 1}$

Ολοκληρωματά με Αντιστροφές Τριγωνομετρικές Συναρτήσεις

11.258	$\int \sin^{-1} ax dx = x \sin^{-1} ax + \frac{1}{a} \sqrt{1 - a^2 x^2}$
11.259	$\int \left(\sin^{-1} ax\right)^2 dx = x \left(\sin^{-1} ax\right)^2 - 2x + \sqrt{1 - a^2 x^2} \sin^{-1} ax$
11.260	$\int x \sin^{-1} ax dx = \frac{x^2}{2} \sin^{-1} ax - \frac{1}{4a^2} \sin^{-1} ax + \frac{x}{4a} \sqrt{1 - a^2 x^2}$
II.261	$\int x^n \sin^{-1} ax dx = \frac{x^{n+1}}{n+1} \sin^{-1} ax - \frac{a}{n+1} \int \frac{x^{n+1} dx}{\sqrt{1-a^2 x^2}}, \qquad n \neq -1$
11.262	$\int \frac{\sin^{-1} ax dx}{x} = ax + \frac{1}{2 \cdot 3 \cdot 3} (ax)^3 + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 5} (ax)^5 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7 \cdot 7} (ax)^7 + \dots \text{gra} a^2 x^2 < 1$
11.263	$\int \frac{\sin^{-1} ax dx}{x^2} = -\frac{1}{x} \sin^{-1} ax - a \ln \left \frac{1 + \sqrt{1 - a^2 x^2}}{ax} \right $
11.264	$\int \cos^{-1} ax dx = x \cos^{-1} ax - \frac{1}{a} \sqrt{1 - a^2 x^2}$
11.265	$\int (\cos^{-1} ax)^2 dx = x \left(\cos^{-1} ax\right)^2 - 2x - \frac{2}{a} \sqrt{1 - a^2 x^2} \cos^{-1} ax$
11.266	$\int x \cos^{-1} ax dx = \frac{x^2}{2} \cos^{-1} ax - \frac{1}{4a^2} \cos^{-1} ax - \frac{x}{4a} \sqrt{1 - a^2 x^2}$
11.267	$\int x^n \cos^{-1} ax dx = \frac{x^{n+1}}{n+1} \cos^{-1} ax + \frac{a}{n+1} \int \frac{x^{n+1} dx}{\sqrt{1-a^2 x^2}}, \qquad n \neq -1$
11.268	$\int \frac{\cos^{-1} ax dx}{x} = \frac{\pi}{2} \ln ax - ax - \frac{1}{2 \cdot 3 \cdot 3} (ax)^3 - \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 5} (ax)^5 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7 \cdot 7} (ax)^7 - \dots, \text{yia} a^2 x^2 < 1$
11.269	$\int \frac{\cos^{-1} ax dx}{x^2} = -\frac{1}{x} \cos^{-1} \frac{1}{ax} + a \ln \left \frac{1 + \sqrt{1 - a^2 x^2}}{ax} \right $

11.270	$\int \tan^{-1} ax dx = x \tan^{-1} ax - \frac{1}{2a} \ln(1 + a^2 x^2)$
II.271	$\int x^n \tan^{-1} ax dx = \frac{x^{n+1}}{n+1} \tan^{-1} ax - \frac{a}{n+1} \int \frac{x^{n+1} dx}{1+a^2 x^2}, \qquad n \neq -1$
II.272	$\int \frac{\tan^{-1} ax dx}{x^2} = -\frac{1}{x} \tan^{-1} ax - \frac{a}{2} \ln \left(\frac{1 + a^2 x^2}{a^2 x^2} \right)$
II.273	$\int \cot^{-1} ax dx = x \cot^{-1} ax + \frac{1}{2a} \ln(1 + a^2 x^2)$
II.274	$\int x^n \cot^{-1} ax dx = \frac{x^{n+1}}{n+1} \cot^{-1} ax + \frac{a}{n+1} \int \frac{x^{n+1} dx}{1+a^2 x^2}, \qquad n \neq -1$
11.275	$\int \frac{\cot^{-1} ax dx}{x^2} = -\frac{1}{x} \cot^{-1} ax + \frac{a}{2} \ln \left(\frac{1 + a^2 x^2}{a^2 x^2} \right)$
11.276	$\int \sec^{-1} ax dx = x \sec^{-1} ax - \frac{1}{a} \ln(ax + \sqrt{a^2 x^2 - 1})$
11.277	$\int x^{n} \sec^{-1} ax dx = \frac{x^{n+1}}{n+1} \sec^{-1} ax \pm \frac{1}{n+1} \int \frac{x^{n} dx}{\sqrt{a^{2} x^{2} - 1}},$ To $+ \alpha v = \frac{\pi}{2} < \sec^{-1} ax < \pi$, to $\alpha v - 0 < \sec^{-1} ax < \frac{\pi}{2}$
11.278	$\int \csc^{-1} ax dx = x \csc^{-1} ax + \frac{1}{a} \ln\left(ax + \sqrt{a^2 x^2 - 1}\right)$
11.279	$\int x^n \csc^{-1} ax dx = \frac{x^{n+1}}{n+1} \csc^{-1} ax \pm \frac{1}{n+1} \int \frac{x^n dx}{\sqrt{a^2 x^2 - 1}}, n \neq -1,$
	To + $\alpha v = 0 < \csc^{-1} ax < \frac{\pi}{2}$, to $-\alpha v = -\frac{\pi}{2} < \csc^{-1} ax < 0$

III

ΟΡΙΣΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

$$\begin{array}{c} \textbf{III.1} & \int_{0}^{\infty} \frac{adx}{a^{2} + x^{2}} = \begin{bmatrix} \frac{\pi}{2}, \ a > 0 \\ 0, \ a = 0 \\ -\frac{\pi}{2}, \ a < 0 \end{bmatrix} \\ \textbf{III.2} & \int_{0}^{\infty} x^{n-1}e^{-x}dx = \int_{0}^{1} \left[\ln\left(\frac{1}{x}\right)\right]^{n-1}dx = \Gamma(n), \quad \Gamma(n+1) = n\Gamma(n), \quad n > 0 \end{bmatrix} \\ \textbf{III.3} & \int_{a}^{\infty} \frac{x^{n-1}}{1 + x}dx = \frac{\pi}{\sin n\pi}, \quad 0 < n < 1 \end{bmatrix} \\ \textbf{III.4} & \int_{a}^{\frac{\pi}{2}} \sin^{n}xdx = \int_{0}^{\frac{\pi}{2}} \cos^{n}xdx = \begin{bmatrix} \frac{1 \cdot 3 \cdots (n-1)}{2 \cdot 4 \cdot 6 \cdots (n-1)}, \quad n \text{ freptrog extpanse} \\ \frac{2 \cdot 4 \cdot 6 \cdots (n-1)}{1 \cdot 3 \cdot 5 \cdots (n-1)}, \quad n \text{ freptrog extpanse} \\ \frac{2 \cdot 4 \cdot 6 \cdots (n-1)}{1 \cdot 3 \cdot 5 \cdots (n-1)}, \quad n \text{ freptrog extpanse} \\ \textbf{III.5} & \int_{0}^{\pi} \sin nx \sin nxdx = \int_{0}^{\pi} \cos nx \sin nxdx = 0, \quad m \neq n, \text{ extpanse} \\ \textbf{III.6} & \int_{a}^{\infty} \frac{\sin^{2}x}{x} dx = \begin{bmatrix} \pi/2, \ a > 0 \\ 0, \ a = 0 \\ -\pi/2, a < 0 \\ \\ -\pi/2, a < 0 \\ \\ \textbf{III.8} & \int_{0}^{\infty} \frac{\sin x \cos ax}{x} dx = \begin{cases} \pi/2, \ a > 0 \\ 0, \ a = 0 \\ -\pi/2, a < 0 \\ \\ -\pi/2, a < 0 \\ \\ \hline \textbf{III.8} & \int_{0}^{\infty} \frac{\sin x \sin bx}{x^{2}} dx = \frac{\pi a}{2}, \quad a < b \\ \\ \textbf{III.9} & \int_{0}^{\infty} \cos x^{2} dx = \int_{0}^{\infty} \sin x^{2} dx = \sqrt{\frac{\pi}{8}} \\ \\ \textbf{II.10} & \int_{0}^{\infty} \cos x^{2} dx = \int_{0}^{\infty} \sin x^{2} dx = \sqrt{\frac{\pi}{8}} \\ \\ \textbf{II.11} & \int_{0}^{\infty} e^{-ax^{2}} dx = \frac{4\pi}{2a}, \quad a > 0 \\ \\ \textbf{II.12} & \int_{0}^{\infty} x^{2} e^{-ax^{2}} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^{n+1}a^{n}} \sqrt{\frac{\pi}{a}}, \quad n : \text{extermos} > 0, \quad a > 0 \\ \\ \textbf{II.13} & \int_{0}^{\infty} x^{3n} e^{-ax^{2}} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^{n+1}a^{n}} \sqrt{\frac{\pi}{a}}, \quad n : \text{extermos} > 0, \quad a > 0 \\ \end{array}$$

III.14	$\int_{0}^{\infty} \sqrt{x} e^{-ax} dx = \frac{1}{2a} \sqrt{\frac{\pi}{a}}, a > 0$
III.15	$\int_{0}^{\infty} \frac{e^{-ax}}{\sqrt{x}} dx = \sqrt{\frac{\pi}{a}}, a > 0$
III.16	$\int_{0}^{\infty} e^{-x^2 - a^2/x^2} dx = rac{1}{2} e^{-2a} \sqrt{\pi}, \ a > 0$
III.17	$\int_0^\infty e^{-ax} \cos bx dx = \frac{a}{a^2 + b^2}, a > 0$
III.18	$\int_0^\infty e^{-ax} \sin bx dx = \frac{b}{a^2 + b^2}, a > 0$
III.19	$\int_0^\infty \frac{e^{-ax} \sin x}{x} dx = \cot^{-1} a, a > 0$
III.20	$\int_{0}^{\infty} e^{-a^{2}x^{2}} \cos bx dx = \frac{\sqrt{\pi}e^{-b^{2}/4a^{2}}}{2a}, a > 0$
III.21	$\int_{0}^{1} (\ln x)^n dx = (-1)^n n!$ n : ακέραιος θετικός
III.22	$\int_{0}^{1} \frac{\ln x}{1-x} dx = -\frac{\pi^2}{6}$
III.23	$\int_{0}^{1} \frac{\ln x}{\sqrt{1-x^{2}}} dx = -\frac{\pi}{2} \ln 2$
III.24	$\int_{0}^{1} \ln\left(\frac{1+x}{1-x}\right) \frac{dx}{x} = \frac{\pi}{4}$
111.25	$\int_0^\infty \ln\left(\frac{e^x+1}{e^x-1}\right) dx = \frac{\pi^2}{4}$
111.26	$\int_0^1 \frac{dx}{\sqrt{\ln(1/x)}} = \sqrt{\pi}$
III.27	$\int_{0}^{1} \ln \ln x dx = \int_{0}^{\infty} e^{-x} \ln x dx = -\gamma = -0.5772157$
111.28	$\int_{0}^{\frac{\pi}{2}} \ln(\sin x) dx = \int_{0}^{\frac{\pi}{2}} \ln(\cos x) dx = -\frac{\pi}{2} \ln 2$
III.29	$\int_{0}^{\pi} x \ln \sin x dx = -\frac{\pi^{2}}{2} \ln 2$
111.30	$\int_{0}^{1} \left(\ln \frac{1}{x} \right)^{1/2} dx = \frac{\sqrt{\pi}}{2}$
III.31	$\int_{0}^{1} \left(\ln \frac{1}{x} \right)^{-1/2} dx = \sqrt{\pi}$
III.32	$\int_{0}^{\pi} \ln(a \pm b \cos x) dx = \pi \ln\left(\frac{a + \sqrt{a^2 - b^2}}{2}\right), a \ge b$
111.33	$\int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx = \ln\left(\frac{1+b}{1+a}\right), b+1 > 0, a+1 > 0$

III.34	$\int_{0}^{\pi} \frac{dx}{a+b\cos x} = \frac{\pi}{\sqrt{a^{2}-b^{2}}}, a > b > 0$
111.35	$\int_{0}^{\infty} \frac{\cos ax}{1+x^{2}} dx = \begin{cases} \frac{\pi}{2} e^{-a}, & a > 0\\ \frac{\pi}{2} e^{a}, & a < 0 \end{cases}$
111.36	$\int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} dx = \int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} dx = \sqrt{\frac{\pi}{2}}$
111.37	$\int_{0}^{\infty} \frac{\tan^{-1} ax - \tan^{-1} bx}{x} dx = \frac{\pi}{2} \ln \frac{a}{b}$
111.38	$\int_{0}^{\infty} \frac{\cos ax - \cos bx}{x} dx = \ln \frac{b}{a}$
111.39	$\int_{0}^{\pi} \frac{(a-b\cos x)dx}{a^{2}+b^{2}-2ab\cos x} = \begin{cases} 0, & a^{2} < b^{2} \\ \frac{\pi}{a}, & a^{2} > b \\ \frac{\pi}{2a}, & a = b \end{cases}$
111.40	$\int_{0}^{1} \frac{1+x^{2}}{1+x^{4}} dx = \frac{\pi}{4} \sqrt{2}$
III.41	$\int_{0}^{1} \frac{\ln(1+x)}{x} dx = \frac{\pi^2}{12}$
111.42	$\int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt{1-k^2\sin^2 x}} = \frac{\pi}{2} \left[1 + \left(\frac{1}{2}\right)^2 k^2 + \left(\frac{1\cdot 3}{2\cdot 4}\right)^2 k^4 + \left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^2 k^6 + \ldots \right], k^2 < 1$
III.43	$\int_{0}^{\frac{\pi}{2}} \sqrt{1-k^2 \sin^2 x} dx = \frac{\pi}{2} \left[1 - \left(\frac{1}{2}\right)^2 k^2 - \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \frac{k^4}{3} - \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^2 \frac{k^6}{5} - \dots \right], k^2 < 1$
111.44	$ \underline{\Sigma \epsilon \iota \rho \acute{\alpha} \text{ Fourier: }} f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{c} + a_2 \cos \frac{2\pi x}{c} + \dots + b_1 \sin \frac{\pi x}{c} + b_2 \sin \frac{2\pi x}{c} + \dots, -c < x < c $ $ \acute{\alpha} \pi \omega a_m = \frac{1}{c} \int_{-c}^{c} f(x) \cos \frac{m\pi x}{c} dx, \qquad b_m = \frac{1}{c} \int_{-c}^{c} f(x) \sin \frac{m\pi x}{c} dx $
111.45	$\int_{0}^{\infty} x^{n} e^{-ax} \sin bx dx = \frac{jn! \left[(a - jb)^{n+1} - (a + jb)^{n+1} \right]}{2(a^{2} + b^{2})^{n+1}}, a > 0, j = \sqrt{-1}$
111.46	$\int_{0}^{\infty} x^{n} e^{-ax} \cos bx dx = \frac{n! \left[(a - jb)^{n+1} + (a + jb)^{n+1} \right]}{2(a^{2} + b^{2})^{n+1}}, a > 0$
III.47	$\int_{0}^{\infty} e^{-x} \ln x dx = -\gamma = -0.5772157$