Λογισμός ΙΙ

Πληροφορίες

Περιεχόμενο μαθήματος

Περιεχόμενο μαθήματος

  • Διανύσματα, Συστήματα Συντεταγμένων, Στοιχεία Αναλυτικής Γεωμετρίας
  • Συναρτήσεις πολλών μεταβλητών, τόποι, πεδία ορισμού, όρια, συνέχεια
  • Μερική παραγώγιση, σύνθετες και πεπλεγμένες συναρτήσεις, Ιακωβιανή, διαφορικά
  • Αναπτύγματα Taylor, ακρότατα, σαγματικά σημεία
  • Διπλά ολοκληρώματα
  • Τριπλά ολοκληρώματα
  • Διανυσματική ανάλυση, κλίση, απόκλιση, περιστροφή, επικαμπύλια ολοκληρώματα, θεώρημα Green

Μαθησιακοί στόχοι

Μαθησιακοί στόχοι

Μετά την παρακολούθηση του μαθήματος οι φοιτητές θα πρέπει να:

  • Γνωρίζουν και να κατανοούν τα βασικά θεωρήματα που διέπουν την Ανάλυση πραγματικής συνάρτησης πολλών πραγματικών μεταβλητών.
  • Κατανοούν την αποδεικτική διαδικασία στα Μαθηματικά και να δύνανται να πραγματοποιούν οι ίδιοι αποδείξεις σε θεωρητικές ασκήσεις.
  • Κατανοούν τον τρόπο υπολογισμού των μαθηματικών οντοτήτων που πραναφέρθηκαν
  • Δύνανται να φέρουν εις πέρας απλούς υπολογισμούς χωρίς τη βοήθεια τεχνικών μέσων

• Γνωρίζουν και να δύνανται να εφαρμόσουν τις πραναφερθείσες μαθηματικές έννοιες σε πρακτικά προβλήματα (π.χ. ακρότατα συνάρτησης δύο μεταβλητών, υπολογισμό εμβαδών και όγκων, υπολογισμό μεγεθών σε δυναμικό πεδίο κ.τ.λ.)

Βιβλιογραφία

Βιβλιογραφία

  • Β. Παπαντωνίου, Συναρτήσεις Πολλών Μεταβλητών, Εκδόσεις Γαρταγάνη, Θεσσαλονίκη 2007.
  • Α. Αθανασιάδη, Β. Φράγκου, Ασκήσεις Διαφορικού και Ολοκληρωτικού Λογισμού Συναρτήσεων Περισσοτέρων Μεταβλητών 4η Έκδοση, Εκδόσεις Ζήτη, Θεσσαλονίκη 2002.
  • Β. Σάλτα, Μαθηματικά ΙΙ: Θεωρία και Πράξη, Εκδόσεις Κλειδάριθμος, Αθήνα 2011.
  • Δ. Χατζόπουλου, Ανώτερα Μαθηματικά Τόμος ΙΙΙ,, Θεσσαλονίκη 1978.

•             Δ.. Δασκαλόπουλου, Ανώτερα Μαθηματικά Τόμος ΙΙ, Αθήνα 1979

Προαπαιτούμενα

Προαπαιτούμενα

Όχι, αλλά είναι σκόπιμο να γνωρίζει ο φοιτητής/ ή φοιτήτρια Λογισμό Ι